Final Report Grant Period: November 5, 2021 – November 29, 2023

For Texas On-Site Sewage Facility (OSSF) Research Contract #582-22-31143

Reduction of Wastewater Effluent from On-Site Sewage Facilities (E-Flow)

Report submitted to: Donna Cosper, P.E., Project Manager Program Support and Texas OSSF Research Grant Program Texas Commission on Environmental Quality P.O. Box 13087, MC - 235 Austin, Texas 78711-3087 Donna.Cosper@tceq.texas.gov

Report Submitted by: Anish Jantrania, Ph.D., P.E., MBA, Associate Professor & Extension Specialist Texas A&M AgriLife Research & Extension 720 E Blackland Road Temple, TX 76502 (254) 774-6014 ajantrania@tamu.edu

May 10, 2024

Table of Contents

List of Tables.	
List of Figures	
List of Photos	
Executive Sun	nmary
Section 1. Intr	oduction and Background7
	ting criteria specified in 30 Texas Administrative Code Chapter 285 regulations g land area for three types of disposal systems
Section 1.2 Co	nsideration of options to reduce liquid discharge
Section 2. Mat	terial and Methods
Section 3. Res	ults and Discussion
Section 4. Cor	clusions and Recommendations
Appendix-A	Quarterly Reports
Appendix-B	Raw Data Sets and Lab Reports
Appendix-C	Greenhouse Dimension and Volume Calculations

List of Tables

Table 1: List of Counties with 10 or more ET bed permits issued in the past 30 years	11
Table 2: Spreadsheet templet developed to store and process monitoring data	22
Table 3: Comparisition of EVED and non-EVED systems on a monthly basis	23
Table 4: Summary of the water quality data collected during the 2023 REEU Program	26
Table 5: Number of samples collected from each locations and number of analysis done	28
Table 6: Results from water quality analysis for samples expressed as average values	29

List of Figures

Figure 1: Trend showing increasing use of aerobic treatment unit (ATU) spray in Texas since mid-1990s. Y-axis shows the number of permits issued in Texas and X-axis is the year. Data complied from the TCEQ OARS information received annually since year 2016
Figure 2: Loading rate for subsurface disposal system based on soil classification from the current OSSF Regulations. (Taken from the 285 Regulations)
Figure 3: Application (Loading) rate for land application (surface dipsosal) system baesd on geographic location. (Taken from the 285 Regulations)
Figure 4: Sizing requirements for an ET bed in Texas. (Taken from 285 Regulations)10
Figure 5: TAMU OSSF Center aerial view showing layout of the two ATUs and two wetland cells used for evaluating performance of EVED and non-EVED systems
Figure 6: Installation of a chamber system under parking lot (L), Stadium (M), and reuse water tank to meet the demand of toilet flushing. Photos from the Case Study shared by Infiltrator 14
Figure 7: Layout of the wetland cells with dimensions and spacing from the nearby structures. 15
Figure 8: Plumbing configuration for the E-Flow project
Figure 9: Graphical representation of the EVED and non-EVED systems for reduction in liquid discharge

List of Photos

Photo 1: Green wall on TAMU main campus (L) and green roof in Houston (R)13
Photo 2: Green wall (L) and green roof (R) after a rain event, showing potential for overflow of
effluent, thus not a suitable option for integration with an onsite sewage facility
Photo 3: A few pictures of the repair work done to the concrete wall of the wetland cell16
Photo 4: Virginia greenhouse project photo in Year 1999 (L) and photo in Year 2019 (R)16
Photo 5: Wetland cells before (L) and after installation of the Greenhouse (R)17
Photo 6: Wetland plants planted in both the cells (October 6, 2022)17
Photo 7: From Left to Right, Tipping bucket, installed at the effluent end, Hobo data logger18
Photo 8: Digital flow recorders for influent (L), and flow data for one week example (R)18
Photo 9: Vegetation in EVED and non-EVED systems, early November 202224
Photo 10: Vegetation in EVED and non-EVED systems, early January 2023, effects of freeze24
Photo 11: Vegetation in EVED and non-EVED systems, early March 202324
Photo 12: Vegetation in EVED and non-EVED systems, mid-April 202325
Photo 13: Vegetation in EVED and non-EVED systems, mid-July 202325
Photo 14: Vegetation in EVED and non-EVED systems, early September 202325
Photo 15: Vegetation in EVED and non-EVED systems, mid-November 202326
Photo 16: A few days after when tomato seedlings were planted (early April)27
Photo 17: Tomato plants and fruits at the end of the REEU program (late June)27

Executive Summary

This research effort addresses one of four eligible projects listed in TCEQ Solicitation 582-21-10767, **RT-2.3.4**, states research is needed to identify technologies and applications that can be:

1. Utilized to eliminate liquid water discharge from on-site sewage facilities; and

2. Coupled with on-site sewage facilities to utilize roof and/or wall space for disposal area. Under current 285 rules specifications for the design requirements, availability of *adequate and suitable disposal area* will continue to be a challenge for properties served by OSSFs. Residential and commercial properties are constantly faced with choosing between on-site disposal and the use/enjoyment of valuable real estate. In the realm of OSSFs, several aerobic treatment technologies are available to the public, however, adequate, and suitable effluent disposal area is proving to be less than available. The **goal** of this project is to develop design solutions for alternate disposal areas using Enhanced Vapor Effluent Discharge (EVED) technique to reduce effluent volume through increased atmospheric discharge.

While the results from this research project may not reduce costs associated with OSSFs, they will offer an option to trade-off use of valuable real estate space for a disposal system that could offer other beneficial usage. EVED technique, if proven reliable for reducing the liquid discharge, may offer a disposal solution for properties that are not currently suitable for development, especially those limited by space (i.e., available land area) for installing an OSSF. In this research project, we asked the following three research questions:

Q1: What effect does an EVED installed on top of a wetland cell have on liquid effluent discharge as compared to a wetland cell without EVED?

Q2: What is the operating experience of existing green-infrastructure buildings using green-roofs and onsite wastewater systems, in terms of reductions in liquid effluent discharge?

Q3: If an EVED technique evaluated in this project reduces liquid discharge by 50% or more then what modifications, if any, are needed in 30 TAC Chapter 285 to allow use of EVED technologies, such as a semi-climate control greenhouse with forced-air ventilation system?

Two wetland cells that are lined and connected to the two aerobic treatment units (ATUs) operating at the TAMU OSSF research facility were used to evaluate the performance of an EVED technique for reducing liquid discharge. A semi-climate control greenhouse was purchased and installed on top of one of the two wetland cells and both the wetland cells were dosed about 100 Gallons Per Day (GPD) effluent from the ATUs. A tipping bucket type innovative device was installed in the existing effluent collection container at the end of each wetland cell. Influent and effluent volume was recorded daily from mid-November 2022 to mid-November 2023 to determine the reduction in liquid discharge from the wetland cell with the EVED system. Temperature and relative humidity data were also collected from both wetland cells. Monthly averages were calculated from the daily data for influent, effluent, temperature, and relative humidity. Both wetland cells were planted uniformly with salt-tolerant wetland plants purchased from an AgriLife Extension Center in Houston to maximize evapotranspiration losses. Rainfall data were collected using an automated rain-gauge to determine gallons per day rain input into the open wetland cell.

The results from the one-year study showed that the wetland cell with the <u>EVED technology</u> reduced the liquid discharge by 48% compared to 11% from the wetland cell without the <u>EVED</u> technology. Capital cost of installing the semi-climate control greenhouse was \$8,500.

Section 1. Introduction and Background

On April 29, 2021, TOGP issued the first Request for Grant Application (RFGA), in which the following four research topics were identified as "Eligible Projects" that must be addressed to make a project eligible for funding (TCEQ RFGA No 582-21-10767, 2021):

- 1. Wastewater Treatment Challenges at RV Parks
- 2. Proper Dosing Techniques and Application Rates for Drip Irrigation
- 3. Aerobic Treatment Units in the Real World (Sampling and New Data)
- 4. Reduction of Wastewater Effluent from On-Site Sewage Facilities

The RFGA stated the following explanation for the 4th research topic:

"Under current rules, adequate and suitable disposal area will continue to be a challenge for properties served by OSSFs. Residential and commercial properties are constantly faced with choosing between on-site disposal and the use/enjoyment of valuable real estate. Research is needed to identify technologies and applications that can be:

- 1. Utilized to eliminate liquid water discharge from on-site sewage facilities; and
- 2. Coupled with on-site sewage facilities to utilize roof and/or wall space for disposal area.

Concepts need to focus on eliminating disease transmission, high component durability, long service life, relatively cost-effective operation, and simple-to-maintain/exchange components. In the realm of OSSFs, treatment is attainable. Adequate and suitable disposal area is proving to be less than available. The goal is to develop solutions for alternate disposal areas."

Texas' population has been growing and is expected to grow during this century. While most of the dwellings in Texas are served by centralized water and wastewater (sewer) systems, about 20% are served by On-Site Sewage Facilities (OSSFs). Texas A&M University (TAMU) research and extension team (TAMU OSSF team) is involved in various activities related to OSSF, including maintaining an inventory of the OSSFs. The total number of dwellings served by OSSFs in Texas at end of year 2022 was more than 2.3 million, which is expected to grow at a rate of about 30,000 per year based on the historical data. Figure 1 shows increasing use of aerobic treatment unit (ATU) spray type OSSFs (measured as number of permits issued per year) in Texas to meet the demands in areas where soil and site conditions are not suitable for septic tank drain field type OSSFs. An ATU approved by TCEQ that meets NSF/ANSI Standard 40 (NSF, 2018), followed by either a chlorine or a UV (Ultraviolet) disinfection unit is required for ATU spray systems.

All OSSFs require a wastewater treatment and an effluent disposal system. §285.33 of the current OSSF regulations specify the criteria for various types of effluent disposal systems and required treatment system before disposal. Three categories of the disposal systems included in the current regulations are (a) Standard disposal system, (b) Proprietary disposal system, and (c) Nonstandard disposal systems. Each of these three categories has multiple sub-categories of disposal systems, which allows a designer to develop a site-specific disposal system design to meet the soil and site criteria specified in the regulations. The goal of the disposal system design is to determine the area (square footage, Sq.Ft.) necessary to dispose of the wastewater flow (gallons per day, GPD) generated by the dwelling based on the loading rate (GPD/Sq.Ft.) for the soil type or site location. Thus, two ways to reduce the required disposal area is either to reduce the liquid discharge volume for disposal or to increase the loading rate for subsurface and land disposal. This research focuses only on the reduction in liquid discharge volume by increasing vapor discharge volume.

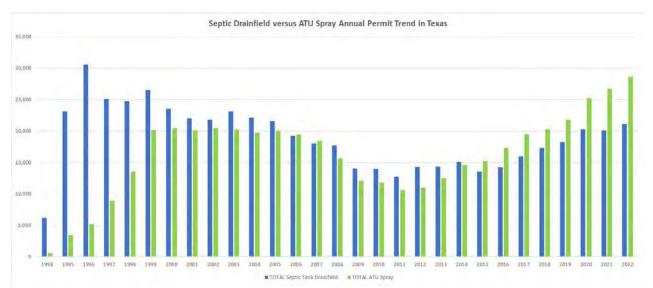


Figure 1: Trend showing increasing use of aerobic treatment unit (ATU) spray in Texas since mid-1990s. The Y-axis shows the number of permits issued in Texas and the X-axis is the year. Data compilied from the TCEQ OARS information received annually since year 2016.

Section 1.1 Sizing criteria specified in 30 Texas Administrative Code Chapter 285 regulations for determining land area for three types of disposal systems.

For subsurface (underground) disposal, OSSF Regulations 285, specifically the §285.91(1) specifies the effluent loading rate based on soil classification as following:

SOIL CLASS (Refer to Table VI)	LONG TERM APPLICATION (Ra) *GALLONS PER ABSORPTIVE AREA (SF) PER DAY
Ia	>0.50
Ib	0.38
II	0.25
III	0.20
IV	0.1

Figure 2: Loading rate for subsurface disposal system based on soil classification from the current OSSF Regulations. (Taken from the 285 Regulations)

The absorptive area required for effluent disposal increases significantly as the soil classification (texture) changes from Class Ib (sandy soil) to Class IV (clay soil). For example, the required absorption area for 100 gallons per day (GPD) system in sandy soil will be about 265 square feet ($100 \div 0.38$) compared to 1,000 square feet for clay soil ($100 \div 0.1$). Actual land area required to install the required square feet of absorption area is typically more and it is calculated using the

formula specified in the OSSF Regulation §285.33(b). Land area requirements can be reduced if the liquid gallons per day flow is reduced by allowing enhanced atmospheric discharge in the form of vapor, i.e., Enhanced Vapor Effluent Discharge (EVED) of the aerobic effluent. The allowable application rates for aerobically treated wastewater (disinfected effluent from a state approved ATU) are specified in §285.90 (1) as shown in Figure 3 based on the geographical location and the rate varies from as low as 0.035 gallons per day per square foot in the eastern part of the state to as high as 0.115 gallons per day per square foot in the western half of the state. Figure 3 shows the allowable loading rate for land application (spray) system. Thus, for 100 GPD system in the eastern part of the state, the area required in the eastern part of the state will be greater than 2,222 square feet (100 \div 0.045) compared to less than 1,163 square feet (100 \div 0.086) in the western half of the state.

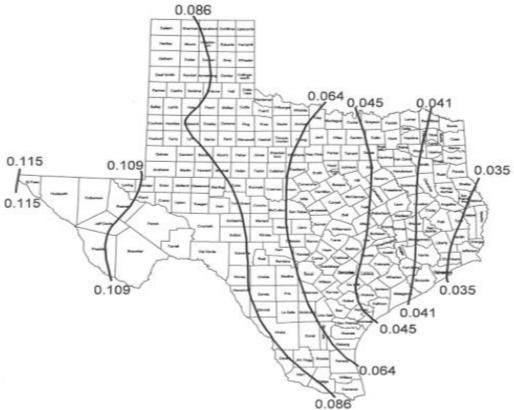


Figure 3: Application (Loading) rate for land application (surface dipsosal) system based on geographic location. (Taken from the 285 Regulations)

When soil site conditions are deemed as "unsuitable" for subsurface absorption (disposal) systems, the current 285 regulations allow use of an Evapotranspiration (ET) system in areas where annual average evaporation exceeds the annual average rainfall. The sizing requirements (loading rates) for an ET bed based on the net evaporation rate are specified in the §285.91(7) and are shown in Figure 4. The total area required for an ET system is calculated by the formula specified in §285.33(b)(2)(B), which is $A = 1.6 \times Q \div Ra$, where Q is the daily flow (GPD), and Ra is the loading rate (GPD/Sq.Ft.). Information from the TCEQ's OSSF Permitting Database (OARS) indicates that about 17,400 permits were issued for ET systems between 1992 and 2022, which is less than 2% of the total permit issued during that period. Thus, ET systems are not widely used in Texas mainly because it requires a large land area. However, if the overall rate of ET is enhanced

by use of a Greenhouse type structure to cover the ET bed, then it is possible to reduce the area requirement. This research was designed to determine if the land-area requirements can be reduced significantly by using an EVED system in Bryan/College Station area.

.

REPORTING STATION	NET EVAPORATION [*] , RET INCHES/DAY
Amarillo	0.21
Austin	0.14
Beaumont	0.04
Big Spring	0.24
Brownsville	0.15
Chilicothe	0.20
Canyon Lake	0.15
College Station	0.12
Corpus Christi	0.15
Daingerfield	0.08
Dallas	0.14
El Paso	0.26
Fort Stockton	0.25
Houston	0.07
Laredo	0.23
Lubbock	0.21
Nacogdoches	0.06
San Antonio	0.15
San Angelo	0.23
Temple	0.15
Throckmorton	0.19
Tyler	0.08

Figure 4: Sizing requirements for an ET bed in Texas. (Taken from 285 Regulations). *NOTE that the conversion factor from inches/day to GPD/Sq.Ft. is 0.623; for example, the net evaporation rate for College Station is 0.12 inches/day = 0.07 GPD/Sq.Ft.*

While the Texas OSSF regulations 285 allows the use of ET beds, the permitting records indicate only 17,390 permits issued for this option over the 30-year period between 1992 and 2022. Table 1 shows the list of Counties where >10 ET beds permits were issued in the past 30 years:

County	ET Beds	Total	% ET Beds	County	ET Beds	Total	% ET Beds
GUADALUPE	2,213	9,103	24%	ELLIS	97	10,364	1%
BASTROP	2,123	19,988	11%	BURLESON	74	2,839	3%
CALDWELL	1,260	4,599	27%	VAL VERDE	74	1,773	4%
TRAVIS	1,167	21,695	5%	GONZALES	61	1,487	4%
GRIMES	957	6,055	16%	WISE	60	16,805	0%
HAYS	913	19,724	5%	LEE	57	1,908	3%
BELL	771	13,713	6%	HIDALGO	55	52,286	0%
WILLIAMSON	612	17,638	3%	BURNET	52	14,389	0%
COLLIN	398	20,852	2%	ZAPATA	51	216	24%
HALE	389	3,954	10%	MADISON	46	1,626	3%
TAYLOR	363	6,506	6%	COOKE	42	5,251	1%
BRAZOS	351	8,946	4%	SMITH	42	16,840	0%
MCLENNAN	350	12,303	3%	BROWN	40	2,771	1%
DENTON	326	17,827	2%	FANNIN	39	6,545	1%
FREESTONE	298	4,098	7%	GILLESPIE	39	5,717	1%
TARRANT	288	16,643	2%	LIMESTONE	36	4,483	1%
PARKER	280	30,476	1%	TCEQ	30	5,620	1%
CAMERON	251	13,945	2%	KENDALL	25	7,530	0.3%
COMAL	250	32,244	1%	MITCHELL	24	389	6%
FALLS	239	1,427	17%	GARZA	23	1,160	2%
BEXAR	219	30,688	1%	AUSTIN	22	5,859	0.4%
WASHINGTON	200	4,378	5%	KERR	22	5,327	0.4%
WEBB	196	1,048	19%	DALLAS	21	1,592	1%
FAYETTE	195	5,720	3%	UVALDE	21	2,579	1%
WILSON	174	9,265	2%	NAVARRO	20	3,486	1%
HUNT	173	13,541	1%	ROCKWALL	19	4,917	0.4%
MILAM	168	2,258	7%	LAMPASAS	17	3,752	0.5%
CLAY	144	1,166	12%	JONES	14	1,535	1%
WICHITA	130	1,960	7%	LIVE OAK	14	2,636	1%
CORYELL	124	2,264	5%	LLANO	14	4,211	0.3%
GRAYSON	124	13,785	1%	ORANGE	14	7,014	0.2%
MAVERICK	121	954	13%	ANGELINA	13	10,515	0.1%
KAUFMAN	117	15,866	1%	MEDINA	13	10,232	0.1%
HOOD	109	12,335	1%	PALO PINTO	13	3,105	0.4%
JOHNSON	108	19,150	1%	BOSQUE	12	2,054	1%
ARCHER	106	1,031	10%	ATASCOSA	11	6,532	0.2%
BANDERA	99	5,548	2%	KARNES	10	716	1%

Table 1: List of Counties with 10 or more ET bed permits issued in the past 30 years:

It is interesting to note that the top four counties with more 1,000 ET beds are <u>not</u> located in far west Texas, where the allowable application (loading) rates for ET beds are the highest as shown in Figure 4, thus requiring less area for installation. It is also important to note that almost all the ET beds permitted in Texas are for disposal of septic tank effluent and not aerobic effluent.

Section 1.2 Consideration of options to reduce liquid discharge.

A climate control greenhouse is typically used for reducing water demand to grow crops; however, this research project was designed to determine effectiveness of a greenhouse to reduce liquid discharge, thus reducing land area requirements. TAMU OSSF team operates a hands-on training, research, and demonstration center on RELLIS Campus (Figure 5) with capacity to conduct a field scale applied research project to address the concerns raised under the Phase-I Texas Onsite Grant Program (TOGP-I). The center modified the research site to compare the performance of an EVED system to a non-EVED system. Figure 6 shows the plumbing diagram for the E-Flow project, where two identical ATUs (Clearstream Model N-500) are connected to two wetland cells, one with the Greenhouse (EVED) and one without (non-EVED). Both the wetland cells are identical in size (12' wide x 25' long x 1.5' deep) and both cells were dosed with the same quantity of aerobically treated wastewater (~100 GPD) thus allowing the comparison of effluent rate reduction between EVED and non-EVED systems.

Figure 5: TAMU OSSF Center aerial view showing layout of the two ATUs, location of wetland cells used for evaluating performance of EVED and non-EVED systems and effluent flow line.

The RFGA specified indicated utilization of a roof and/or wall space for disposal area, meaning the concepts of using a green roof and/or green wall for disposal of adequately treated wastewater. While these two concepts were not investigated in this project, several observations were made of an existing green wall on the main campus of the Texas A&M University and an existing green roof that is being used for reuse of AC condensate in downtown Houston. Photo 1 shows both structures. Based on our observations, it was concluded that these structures are not suitable for integrating with an onsite sewage facility due to potential risks to public health from unintended overflow and/or discharge during heavy rain periods, as shown in Photo 2.

Photo 1: Green wall on TAMU main campus (L) and green roof in Houston (R)

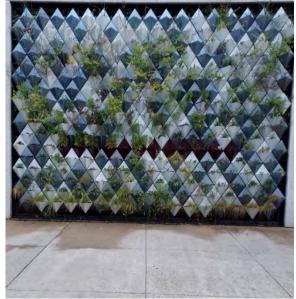


Photo 2: Green wall (L) and green roof (R) after a rain event, showing potential for overflow of effluent, thus not a suitable option for integration with an onsite sewage facility.

Finally, a new idea was conceptualized during the second quarter of this project, related to "dual use" drainfield area. Discussion with a private company (Infiltrator Water Technologies), that has developed design specifications and construction materials for using their traffic load bearing chambers under a parking lot. Dual-use systems will allow OSSF users to use the drainfield area for other beneficial use such as a parking lot. NOTE: TAC 285 regulations may prohibit this, however, discussions outside Texas indicate that this concept is utilized specifically for commercial projects where land is at a premium. An example case study shared by the company is of the Gillette Stadium, Home of the New England Patriots in Boston, MA. For this 68,000-seat stadium, there were two challenges, lack of an adequate amount of water to meet the demand and lack of land area for installation of a disposal system. These challenges were addressed by installing an on-site non-potable reuse system to meet the demand for flushing toilet reusing treated wastewater and use of the large parking lot for installation of a chamber system under the parking lot to dispose of excess effluent. Figure 6 shows photos taken from the case study of this project.

Figure 6: Installation of a chamber system under the parking lot (L), Stadium (M), and reuse water tank to meet the demand of toilet flushing. Photos are shared by Infiltrator.

Infiltrator Water System is ready to offer technical guidance and design documentation for installing a similar system in Texas, when necessary. Dr. Jantrania met with a regulator in one of the counties to discuss a potential application and demonstration of this concept for a commercial facility that is facing challenges for finding land area for installation of a subsurface disposal system but has land area available for the parking lot. However, that project is on hold as of the end of this project, thus no further actions were taken.

The rest of this report includes the details on the installation of an EVED system at the OSSF Center on RELLIS Campus, comparison of liquid discharge quantity from the EVED and non-EVED systems, and data analysis to determine effectiveness of the EVED system for reduction of the liquid discharge. While most of the research efforts were focused on studying the quantity of effluent (GPD), a few samples of the effluent at various points in the systems were also collected during the summer REEU (Research and Extension Experience for Undergraduate) program to determine the quality of the liquid. Sections 2 and 3 contain details on the methods and data analysis, while Section 4 contains the conclusions and final recommendations. Appendix-A includes the quarterly reports submitted during this project and Appendix-B contains the raw data set for the flow quantity (influent and effluent) as well as temperature, rainfall, and RH.

It is important to note that Ryan Gerlich, one of the research team members with the TAMU-OSSF team was instrumental in all aspects of retrofitting the Center for conducting this project.

Section 2. Material and Methods

The final contract for this project was signed on November 5th, 2021, and the concept for this project was discussed during the afternoon session of the 3rd annual meeting of the TOGP advisory committee held on the RELLIS Campus on November 10th, 2021. Due to delays in getting this project started, the QAPP document for the project was submitted to TCEQ in May 2022, which was approved in early October 2022. Thus, the modification of existing wetland to evaluate the EVED and non-EVED systems started only after the approval of the QAPP. During the early months of 2022, the research team did preliminary work to ensure that both the wetland cells and both the ATUs were ready for this project. Since the ATUs were used in the first phase of the TOGP program, they were operational and well maintained. The only modification needed was to connect both the ATUs to the wetland cells so that effluent can be dosed into wetland cells before returning to the RELLIS sewer line through the central discharge tank. The research team also contacted several greenhouse companies to get quotations for a custom build greenhouse that would fit one of the two wetland cells. Figure 7 was prepared to share with the greenhouse companies for the dimension of the greenhouse and the location where it will need to be built. It was decided that the south-side (facing left when seen from the front end) wetland cell will be covered with the greenhouse and the other one would remain open.

Figure 7: Layout of the wetland cells with dimensions and spacing from the nearby structures. NOTE that the wetland cell on the south side is not shown in this figure. However, it is of the same size as the cell shown in this figure. Also, at this point only this wetland cell was receiving ATU effluent, thus it shows vegetation, and the other cell does not.

The wetland cell with the vegetation shown in Figure 7 has a lined bed with wooden frame around it, while the wetland cell on left of it is contained in a concrete container. Both cells were inspected for water leakage and the concrete wall was found to have several cracks, which were repaired using quick-settling concrete. Both cells were flushed using fresh water to remove

previously dosed wastewater and both cells were tested for watertightness by holding a constant water level for a day. Photo 3 shows a few pictures of fixing the concrete wall and holding a constant water level in the cell.

Photo 3: A few pictures of the repair work done to the concrete wall of the wetland cell.

A fully climate control greenhouse with an automated roof opening for removing humidity, as shown in Photo 4, to maximize reduction in liquid discharge has been in operation in Virginia since 1999 with great success (>90% reduction liquid discharge with reuse for toilet flushing). The company that delivered material to build the greenhouse used in Virginia is no longer in business, however, Dr. Jantrania found another company based in Mobile Alabama (Gothic Arch Greenhouse) that offers custom build greenhouse with full automation for climate control. After several phone conversations, the company sent a quotation for the total of \$56,922.50 to install the greenhouse for this project. The price was not affordable for this project, nor would it be affordable for a homeowner interested in this type of system to reduce liquid discharge.

Photo 4: Virginia greenhouse project photo in Year 1999 (L) and photo in Year 2019 (R)

With the help from Texas A&M AgriLife Director for the Facilities & Planning, another company in San Antonio, Texas was identified and contacted in late August 2022. The company is called Greenhouse etc. (<u>https://www.greenhousestx.net/</u>) and they offered semi-climate control with manual ventilation controls, and a handle to open and close a window at one end of the

greenhouse, for a total cost of less than \$10,000. The final quotation from the company was for \$8,341 for complete installation of their product called "11x24 Big Barn Greenhouse." The company representative came to the Center and installed the greenhouse in one day, indicating that such a system would be feasible to integrate with the OSSF installation work! Photo 5 shows the wetland cells before and after installation of the Greenhouse. Note that in this report, the wetland cell with the Greenhouse is referred to as either Greenhouse or EVED system and the cell without the Greenhouse is referred to as either Open or non-EVED system.

Photo 5: Wetland cells before (L) and after installation of the Greenhouse (R) *NOTE:* Ignore the metal frame on the wetland next to the Greenhouse, that was removed before the start of this research project.

Texas A&M AgriLife Extension operates a wetland plant nursery in the Houston area, from which salt talrent wetland plants were obtained for planning in both wetland cells along with the canna lylly orginally present in the open wetland. Equal number of plants were planted in both the cells. Photo 6 shows the wetland with plants planted in early October 2022.

Photo 6: Wetland plants planted in both the cells (October 6, 2022) NOTE: The planters shown in the open wetland cells were eventually buried inside the gravel. One final challenge associated with this project was to develop and implement a method for measuring the gravity discharge from both the wetland cells. A tipping bucket, typically used in a gravity drainfield for even distribution was the answer to address that challenge. Ryan Gerlich from the reseach team designed and built a gravity flow measurement system using the tipping bucket (available from Polylok, Inc.) and Hobo data logger (*HOBO*® *MX2300 Series Data Logger*) system that will allow to accurately measure the gravity discharge volume on a daily basis from both the cells. Photo 7 shows several pictures of the effluent discharge measurement system installed at the outlet end of both the wetland cells. Each tip of the tipping bucket = 1.5 gallons.

Photo 7: From Left to Right, Tipping bucket, installed at the effluent end, and Hobo data logger. *NOTE: Contact Ryan to get details on how he designed and built this system!*

Measuring influent on a daily basis was relatively easy as both the wetlands were dosed using a pump system installed at the end of the two ATUs used for this project, and the ATUs were dosed using two separate pumps operated using a digial control panel with the input from the flow meters. Photo 8 below shows the the digital meters recording the daily flows to the Greehouse (i.e., EVED) and the Open Wetland (i.e., non-EVED) system. Of course, this is not the perfect solution for collecting daily influent data because the digital meter readings are stored for only 7 days, thus one of the graduate students assisting with this project was assigned a task to take digital pictures once a week and maintain a spreadsheet to determine daily flow during this project. In the future, when adequate funding becomes available, TAMU OSSF research team expects to upgrade this system such that the digital data are collected and stored on an annual basis, not just weekly.

Photo 8: Digital flow recorders for influent (L), and example of the flow data for one week (R). Overall plumbing diagram for this research project is presented in Figure 8.

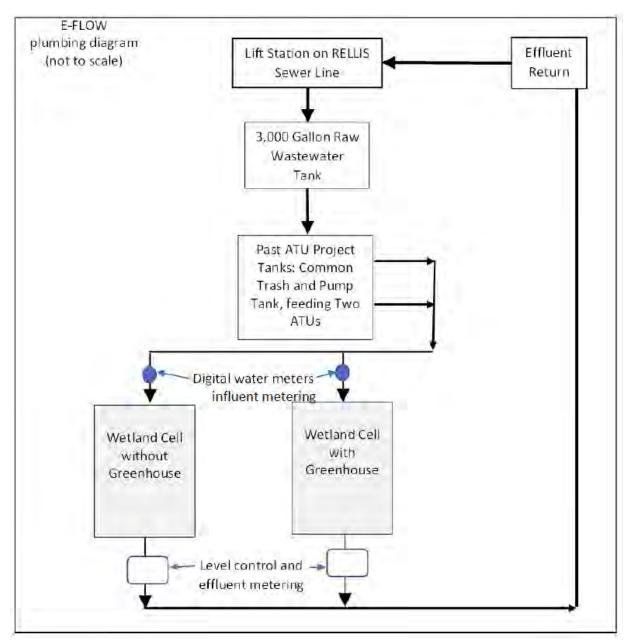


Figure 8: Plumbing configuration for the E-Flow project NOTE that the two ATUs used in this project are the same as those used in TOGP-I ATU evaluation project. However, for this project, both ATUs were time-dosed hourly and the total flow to each ATU was kept around 100 GPD. Wetland Cell without Greenhouse = non-EVED, and Wetland Cell with Greenhouse = EVED.

Both the systems were set up by mid-November 2022 for the experimenting and data collection started on November 17, 2022, with the goal of collecting one-year of data before the grant required date to end the project. Since the funding agency (TCEQ) agreed to extend the project end date from August 31, 2023, to November 29, 2023, the research team was able to collect and analyze the data set for the **one-year period** starting from November 16, 2022, to November 16, 2023. Graduate students working on this project helped with the data collection on a weekly basis.

Even though under the TOGP-II grant agreement, data collection for this project was officially completed after one year, the TAMU research team plans to continue collecting data after the end date to see the effects of long-term operation of the greenhouse in reducing liquid discharge. It is important to run this type of project for at least three years to understand the effectiveness of a natural system operating in the greenhouse as well as to understand the maintenance requirements of this type of natural system. During the TOGP-III phase, performances of EVED and non-EVED systems will be incorporated in Project 3, *"Flow Equalization or Dosing Refinement"* mainly to determine the reduction in liquid discharge at a higher hydraulic loading rate.

During the second quarter of the project, a new idea was conceptualized related to a "dual use" drainfield area. Dr. Jantrania contacted Infiltrator Water System that offers design specifications and construction materials for installing an effluent disposal system under a parking lot, thus allowing dual use of the area. Dual-use systems will allow OSSF users to use the drainfield area for other beneficial use such as a parking lot. Current 285 regulations may prohibit installation of a drainfield under a parking lot, however, project(s) done outside Texas indicate that this concept is utilized specifically for commercial projects where land is at a premium. To explore a potential field-demonstration site for such a project in Texas, Dr. Jantrania had a daylong meeting in Denton County with the DR during which one of the sites visited would be a potential candidate for installation of an effluent dispersal system under a paved parking lot. The DR shared details of the site including preliminary soil information and his notes from the "pre-development" meeting with the client who is planning to build a store on that site. The Infiltrator Water System agreed to offer their technical guidance to design a disposal system under the parking lot when the project moves forward. However, that project has not moved forward as of November 2023, thus that concept is not going to be able to be studied further at this point.

In late October 2022, Dr. Jantrania visited the green roof facility located in downtown Houston to see if this concept should be further investigated as an alternative site for disposal of treated wastewater. The Green roof located on top of the Post Houston (https://www.posthtx.com/) known as the Skyfarm, a one-acre urban food farm operated by Blackwood Educational Land Institute (https://blackwoodland.org/the-skyfarm-at-post-houston/). The Green Roof facility is built and operated to maximize use of AC condensate water for irrigation needed in the farm operated on the roof. This facility could make a very good place to monitor the amount of water lost through ET from the roof. However, there are no water meters installed at this facility to monitor the flow nor is it possible to monitor the discharge from the roof of excess water, which is diverted into the city stormwater drainage system. Based on the observations made during the site visit, several wet spots and standing water pool were noticed, indicating overflow (see Photo 1 and 2 in Section 1). Based on this observation it is concluded that use of green roof, or a green wall should be ruled-out of consideration for flow-reduction techniques because sizing will not be any different from the current sizing for ET beds which is not feasible for areas with negative ET rates.

During the 4th quarter of this project, a decision was made to integrate this project with the DRIP project allowing both the research projects to use the wetland cells. 300 feet of drip tubing were hand installed just below the gravel surface in both wetland cells and were used to dose the effluent daily. This integration was beneficial to both the projects as both could use the same quality and quantity of aerobic effluent without having to install drip lines in another area where a disposal permit could have been required. Discharge from the wetland is returned to RELLIS sewer.

Section 3. Results and Discussion

The primary objective of this field research was to determine the net-evapotranspiration (net-ET) rate of the EVED and the non-EVED systems installed at the research center on Texas A&M RELLIS Campus, located in Bryan, TX. Actual flow data measurements (influent and effluent) were used to determine the reductions in liquid discharges from the EVED (wetland with the greenhouse, greenhouse wetland) and the non-EVED (wetland without the greenhouse, i.e., open wetland). Both wetlands were dosed uniformly at the rate of about 100 GPD ($\pm 1\%$), thus allowing to compare the effects of using a greenhouse to reduce the liquid discharge, thus reducing the land needed for an effluent disposal system.

Reduction in liquid discharge = GPD Influent – GPD Effluent

Influent data were collected from the digital flow meter readings (Photo 8) and the effluent flow data were collected using the Hobo data logger that records the number of times the tipping buckets installed at the effluent end tipped per day (Photo 7). Note that one tip = 1.5 gallons.

Temperature and humidity sensors were installed both inside and outside the greenhouse and dedicated Hobo data loggers collected data at four data points per hour. The data loggers were programmed to report daily average Temperature (°F) and Relative Humidity (%). Note that the relative humidity data collection started only in mid-January 2023. The automatic rainfall data logger that was used during the TOGP-I "*LPD*" Project was used to log daily rainfall (inches/day) and the results were converted into GPD rain input to the open wetland (non-EVED) system.

GPD Rainfall into the open wetland (non-EVED) = Rainfall (inch/day) x conversion factor. NOTE that the wetland area = 300 Square Feet, thus the conversion factor for the wetland is1 inch/day rainfall = 187 GPD

Table 2 shows the template used for recording daily values of Influent, Effluent, Temperature, Relative Humidity, and Rainfall. At the end of the month, average values for all the parameters were calculated to determine the reduction in liquid discharge for that month for the EVED and non-EVED systems, and to compare the temperature and relative humidity values inside the Greenhouse and outside the Greenhouse. Table 3 shows the monthly average values and the % reduction in liquid discharges from EVED and non-EVED.

Data collection started on November 17, 2022, and continued for 365 days concluding on November 16, 2023. During this year long period, average daily influent flow into EVED (greenhouse) system was 101 GPD and that into non-EVED (open) wetland was 100 GPD, thus within 1% as desired. Table 3 shows monthly averages for influent and effluent values. Since the focus of this study was to determine the reduction in effluent (liquid) discharge from both the systems, variation in the monthly average influent values do not adversely affect the results.

Field observations of the vegetation growth were observed on a regular basis and photos were taken for both the systems. Photos 9 through 16 show the vegetation inside the EVED and non-EVED systems, clearly showing the positive effects of semi-climate control conditions on vegetation grown.

			house Wetla						pen Wetlan			RAI
bs #	Date	Avg Temp	Avg RH%	Influent GPD	Effluent GPD	Obs #	Date	Avg Temp	Avg RH%	Influent GPD	Effluent GPD	GPD
1	11/17/22	57.3	N/A	102.4	36	1	11/17/22	51.3	N/A	99.5	15	0
2	11/18/22	60.6	N/A	102.4	51	2	11/18/22	51.9	N/A	99.5	80	0
3	11/19/22	48.6	N/A	102.6	77	3	11/19/22	43.0	N/A	98.5	130	0
4	11/20/22	52.7	N/A	101.8	72	4	11/20/22	43.3	N/A	99.4	85	0
5	11/21/22	50.5	N/A	85.6	51	5	11/21/22	44.6	N/A	83.0	124	0
6	11/22/22	60.3	N/A	102.6	76	6	11/22/22	51.0	N/A	99.6	87	0
7	11/23/22	69.8	N/A	100.7	55	7	11/23/22	61.8	N/A	99.3	77	0
8	11/24/22	65.7	N/A	102.0	100	8	11/24/22	63.9	N/A	99.3	154	131
9	11/25/22	62.5	N/A	102.6	95	9	11/25/22	59.8	N/A	99.3	81	8
10	11/26/22	64.2	N/A	102.8	86	10	11/26/22	56.2	N/A	99.1	272	228
11	11/27/22	63.3	N/A	102.8	69	11	11/27/22	54.8	N/A	99.9	142	0
12	11/28/22	65.4	N/A	102.8	62	12	11/28/22	58.2	N/A	100.5	122	0
13	11/29/22	75.0	N/A	102.4	66	13	11/29/22	71.9	N/A	100.2	85	0
14	11/30/22	60.9	N/A	103.0	52	14	11/30/22	50.2	N/A	99.9	81	0
15	12/01/22	57.3	N/A	102.4	61	15	12/01/22	48.6	N/A	100.3	80	0
16	12/02/22	65.4	N/A	101.8	64	16	12/02/22	62.7	N/A	100.2	81	0
17	12/03/22	65.3	N/A	102.1	64	17	12/03/22	62.2	N/A	100.0	81	0
18	12/04/22	62.9	N/A	102.9	56	18	12/04/22	57.8	N/A	100.1	81	0
19	12/05/22	68.9	N/A	101.6	67	19	12/05/22	65.1	N/A	100.1	80	0
20	12/06/22	53.9	N/A	101.1	64	20	12/06/22	80.7	N/A	100.0	81	0
21	12/07/22	57.1	N/A	101.6	54	21	12/07/22	78.4	N/A	100.0	78	0
22	12/08/22	62.4	N/A	102.3	57	22	12/08/22	42.0	N/A	99.9	42	0
23	12/09/22	64.5	N/A	102.5	62	23	12/09/22	0.0	N/A	100.7	0	0
24	12/10/22	48.6	N/A	102.0	64	24	12/10/22	28.4	N/A	100.0	28	35
25	12/11/22	97.2	N/A	102.3	49	25	12/11/22	0.0	N/A	101.7	0	321
26	12/12/22	80.3	N/A	102.6	97	26	12/12/22	0.0	N/A	101.1	0	0
27	12/13/22	69.8	N/A	102.9	80	20	12/13/22	0.0	N/A	101.4	0	3
28	12/14/22	62.4	N/A	103.1	70	28	12/13/22	26.1				13
						20			N/A	101.2	26	
29	12/15/22	58.1	N/A	102.8	62		12/15/22	79.5	N/A	101.3	80	0
30	12/16/22	53.9	N/A	103.3	58	30	12/16/22	50.0	N/A	102.3	50	3
335	10/17/23	66.2	63.9	103	17	335	10/17/23	57.7	58.5	101	76	0
336	10/18/23	71.5	63.4	104	10	336	10/18/23	66.0	63.4	100	70	0
337	10/19/23	74.2	64.1	104	25	337	10/19/23	69.3	67.0	101	77	0
338	10/20/23	74.6	58.3	105	25	338	10/20/23	71.8	53.8	101	64	0
339	10/21/23	75.1	63.6	104	26	339	10/21/23	72.4	56.9	101	66	0
340	10/22/23	80.1	66.7	105	44	340	10/22/23	76.5	70.8	101	66	0
341	10/23/23	80.7	69.6	105	52	341	10/23/23	78.0	71.2	100	86	0
342	10/24/23	80.8	68.8	105	64	342	10/24/23	78.4	70.1	101	68	0
343	10/25/23	80.9	74.5	105	58	343	10/25/23	77.2	79.9	101	92	52
344	10/26/23	79.0	76.0	105	60	344	10/26/23	75.3	87.0	101	149	117
345	10/27/23	82.2	74.5	105	85	345	10/27/23	77.2	88.5	101	86	14
346	10/28/23	83.2	71.5	105	80	346	10/28/23	79.1	81.6	101	89	38
347	10/29/23	67.4	74.3	105	77	347	10/29/23	62.1	87.6	101	107	52
348	10/30/23	47.7	76.0	100	66	348	10/30/23	44.7	80.8	101	125	61
349	10/31/23	58.2	61.7	107	57	349	10/31/23	49.3	57.2	101	78	0
850		58.2	67.6	107	30	349		49.3			72	0
	11/01/23	58.2			30	350	11/01/23		63.06	103	94	
351	11/02/23		69.2	107			11/02/23	49.59	62.83	102		0
352	11/03/23	66.1	68.7	107	30	352	11/03/23	60.03	66.61	103	32	0
353	11/04/23	71.2	70.0	107	36	353	11/04/23	65.15	77.68	103	106	0
54	11/05/23	73.8	70.6	106	35	354	11/05/23	68.26	79.22	102	23	0
55	11/06/23	75.7	71.4	106	42	355	11/06/23	71.05	76.29	102	22	0
56	11/07/23	78.0	67.6	108	42	356	11/07/23	74.01	73.73	106	102	0
57	11/08/23	78.6	70.3	106	41	357	11/08/23	74.83	76.53	102	162	0
858	11/09/23	72.2	82.7	107	53	358	11/09/23	68.67	86.34	102	67	54
59	11/10/23	59.2	85.6	107	68	359	11/10/23	56.15	90.54	102	125	38
60	11/11/23	60.4	85.0	107	60	360	11/11/23	56.43	87.94	102	94	0
61	11/12/23	62.4	83.7	106	66	361	11/12/23	59.38	82.65	103	78	26
362	11/13/23	64.1	82.7	107	67	362	11/13/23	59.85	81.48	103	108	31
363	11/14/23	65.4	79.0	107	54	363	11/14/23	61.22	75.9	103	69	0
364	11/15/23	67.3	70.9	107	52	364	11/15/23	60.44	73.49	103	69	0
365	11/15/23	63.0	84.8	107	59	365	11/15/23	59.34	85.87	103	70	0

Table 2: Spreadsheet templet developed to store and process monitoring data.

NOTE: Appendix B contains all the data for the influent, effluent, temperature, relative humidity, and rainfall recorded during the 365 days observation period.

	Aveage Influent and Discharge By Months										
	Gr	eenhouse, EV	ED	(RAIN						
	Influent	Effluent	% Reduction	Influent	Effluent	% Reduction	GPD				
Nov-22	101	68	33%	98	110	-11%	26				
Dec-22	95	57	40%	94	76	19%	47				
Jan-23	105	65	38%	103	102	1%	17				
Feb-23	107	64	40%	106	104	1%	11				
Mar-23	106	54	49%	105	79	25%	10				
Apr-23	94	66	30%	92	148	-61%	82				
May-23	106	62	41%	102	81	20%	22				
Jun-23	103	50	52%	100	74	26%	19				
Jul-23	90	26	72%	99	61	39%	3				
Aug-23	99	30	70%	97	67	31%	0				
Sep-23	102	48	52%	97	82	15%	17				
Oct-23	104	47	55%	101	89	12%	25				
Nov-23	107	48	55%	103	81	21%					
AVG	101	53	48%	100	89	11%	23				
RANG	90 - 107	26 - 68	30% - 72%	92 - 106	61 - 148	<0% - 39%	0 - 82				

Table 3: Comparisition of EVED and non-EVED systems on a monthly basis.

On an annual basis, the average reduction in liquid discharge from the EVED system was 48 GPD, while that from the non-EVED system was 11 GPD. This indicates that the EVED system was able to significantly reduce the liquid discharge (>400%) compared to non-EVED system.

Figure 9 shows the graphical representation of the monthly average flow data, indicating the effects of rain (green line) on the effluent discharge from the non-EVED (open wetland) system (yellow line). Since the greenhouse prevents rainfall addition, the effluent discharge from the EVED (greenhouse) system (red line) is consistently less compared to the non-EVED system.

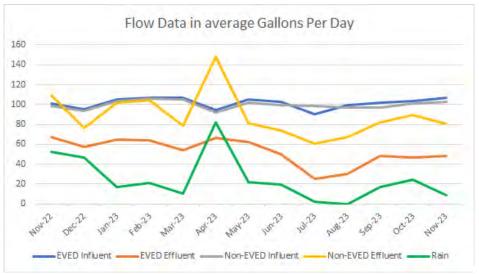


Figure 9: Graphical representation of the EVED and non-EVED systems for reduction in liquid discharge.

Photo 9: Vegetation in EVED and non-EVED systems, early November 2022

Photo 10: Vegetation in EVED and non-EVED systems, early January 2023, effects of freeze.

Photo 11: Vegetation in EVED and non-EVED systems, early March 2023

Photo 12: Vegetation in EVED and non-EVED systems, mid-April 2023

Photo 13: Vegetation in EVED and non-EVED systems, mid-July 2023

Photo 14: Vegetation in EVED and non-EVED systems, early September 2023

Photo 15: Vegetation in EVED and non-EVED systems, mid-November 2023, end of observation period for TOGP-II.

The E-Flow project was included in the 2023 Reuse Water Quality Research and Extension Experiences for Undergraduates (REEU) program's field activities (reeu.baen.tamu.edu/). During the five-week summer program, undergraduate students studied the concept of the effluent flow reduction technique used in this project, and they collected water-quality samples from six sampling points, Raw WW, ATU effluent, wetland effluent, greenhouse dehumidifier, the distillation unit used to "polish" the effluent from the open wetland, and DW. An automated dehumidifier manufactured by Dri-Eaz (www.legendbrandsrestoration.com/Products/LGR-6000Li-Portable-Dehumidifier) was installed in the greenhouse to harvest water from the humid air when the % RH value exceeded 80%. The dehumidifier generated about 10 gallons of water during the night hours. The results of the water quality analysis are presented in Table 4 below.

	Tank - A	Tank - F	Tank - G	Tank - H	Tank - I	Tank - J
BOD	65	2	0	0	0	0
TSS	64	39	0	0	0	0
Ammonia-N	18	0.02	0	0.3	0.08	0.07
Nitrate/Nitritie-N	0.1	22	6	0.1	0.7	0.2
TKN	23	1	1.4	0.4	0.3	0.2
Total-N	23.1	23	7.4	0.5	1	0.4
Total-P	3.4	4.8	3.2	0.1	0.2	0.2
E. Coli (MPN/100ml)	2,455,219	3,242	11	0	1	0
Turbididty (n=10)	37	26	1.4	0.3	0.7	0.4
	Raw WW (n=10)	ATU (n=10)	EVED-Wetland (n=5)	Dehumidifier (n variable)	Non-EVEDDistllation (n variable)	DW (n variable
	A	F	G	E.		J.C.

Table 4: Summary of the water quality data collected during the 2023 REEU Program. *NOTE: Units for all the parameters are mg/L except for the E. Coli and Turbidity. Unit for E. Coli is MPN/100ml, while that for Turbidity is NTU. Values reported as 0 are the actual values reported by the Laboratory.*

A tomato seedling was planted in both the wetland cells on the same day in late March; however, the growth of the tomato plants was significantly different, the one inside the greenhouse grew far better compared to the one outside the greenhouse as shown in the Photos 16 and 17. Also, the plant inside the greenhouse produced significantly more and bigger tomatoes compared to the one outside demonstrating the benefits of growing vegetables inside the greenhouse. The research team wanted to get the tomatoes' quality tested in a food laboratory, however, due to time constraints, that work was not done during this project. A cautionary label was placed on both the plants indicating that reuse/reclaimed wastewater was used to grow the tomatoes, thus they are not for human consumption.

Photo 16: A few days after the tomato seedlings were planted (early April).

Photo 17: Tomato plants and fruits at the end of the REEU program (late June).

During the seven-week period starting September 11, 2023, to October 26, 2023, water quality sampling for influent, effluent, and dehumidify water was conducted. Water quality samples were collected and delivered to Aqua-Tech Laboratories (a certified laboratory close to the research site) by the graduate students assisting on this project.

A total of 425 samples were collected and analyzed for typical constituents of interest.

Tables 5 and 6 give summary statistics for the water quality, which indicates that the effluent from the EVED system meets the requirements of non-potable reuse water quality, thus after adequate disinfection and polishing can be used for toilet flushing.

EVED (Greenhouse) I	nfluent, total = 90	non-EV	ED (Open we	tland) Influent, total = 100	
Ammonia as N	10	Ammonia a	s N	10	
BOD (5 day)	10	BOD (5 day)	10	
E. Coli	10	E. Coli	E. Coli		
Fecal Coliform	10	Fecal Colifo	rm	20	
Nitrate/Nitrite as N	10	Nitrate/Nitr	10		
Phosphorus-Total	10	Phosphorus	10		
Total Kjeldahl Nitrogen as N	10	Total Kjelda	hl Nitrogen a	s N 10	
Total Suspended Solids	10	Total Suspe	10		
Turbidity	10	Turbidity		10	
EVED (Greenhouse) Ef	fluent, total = 100	non-E\	/ED (Open we	etland) Effluent, total = 90	
Ammonia as N	10	Ammonia a	s N	10	
BOD (5 day)	10	BOD (5 day	10		
E. Coli	10	E. Coli	10		
Fecal Coliform	20	Fecal Colifo	10		
Nitrate/Nitrite as N	10	Nitrate/Nitr	ite as N	10	
Phosphorus-Total	10	Phosphorus	s-Total	10	
Total Kjeldahl Nitrogen as N	10	Total Kjelda	hl Nitrogen a	s N 10	
Total Suspended Solids	10	Total Suspe	nded Solids	10	
Turbidity	10	Turbidity		10	
	Dehumidifier Wa	ater, total = 45			
	Ammonia as N	5			
	BOD (5 day)	5			
	E. Coli	5			
	Fecal Coliform	5			
	Nitrate/Nitrite as N	5			
	Phosphorus-Total	5			
	Total Kjeldahl Nitrogen as N	5			
	Total Suspended Solids	5			
	Turbidity	5			

Table 5: Number of samples collected from each location and number of analyses done.

The number of samples collected was strictly based on the funds available to cover the cost of sample analysis, based on the quotation received from the Aqua-Tech Laboratory. All samples were grab samples collected by the graduate students who also delivered the samples to the Aqua-Tech Laboratory.

EVED (Greenhou	ise) Influent			non-EVED (Ope	en wetla	nd) Influe	nt
Ammonia as N	0	mg/L		Ammonia as N		0	mg/L
BOD (5 day)	1	mg/L		BOD (5 day)		1	mg/L
E. Coli	189	MPN/100 mL		E. Coli		131	MPN/100 mL
Fecal Coliform	143	CFU/100 mL		Fecal Coliform		204	CFU/100 mL
Nitrate/Nitrite as N	18	mg/L		Nitrate/Nitrite as N		17	mg/L
Phosphorus-Total	4	mg/L		Phosphorus-Total		4	mg/L
Total Kjeldahl Nitrogen as N	0	mg/L		Total Kjeldahl Nitrogen as	s N	2	mg/L
Total Suspended Solids	7	mg/L		Total Suspended Solids		37	mg/L
Turbidity	6	NTU		Turbidity		26	NTU
EVED (Greenhou	ise) Effluent			non-EVED (Ope	en wetla	nd) Efflue	nt
Ammonia as N	0	mg/L		Ammonia as N		0	mg/L
BOD (5 day)	0	mg/L		BOD (5 day)		0	mg/L
E. Coli	8	MPN/100 mL		E. Coli		2	MPN/100 mL
Fecal Coliform	146	CFU/100 mL		Fecal Coliform		31	CFU/100 mL
Nitrate/Nitrite as N	8	mg/L		Nitrate/Nitrite as N		9	mg/L
Phosphorus-Total	4	mg/L		Phosphorus-Total		4	mg/L
Total Kjeldahl Nitrogen as N	1	mg/L		Total Kjeldahl Nitrogen as	s N	2	mg/L
Total Suspended Solids	2	mg/L		Total Suspended Solids		0	mg/L
Turbidity	3	NTU		Turbidity		6	NTU
		Dehum	idifier Water				
	Ammonia	as N		1 mg/L			
	BOD (5 day	y)		1 mg/L			
	E. Coli			0 MPN/100 mL			
	Fecal Colif	orm		0 CFU/100 mL			
	Nitrate/Nitrite as N Phosphorus-Total			0 mg/L			
				0 mg/L			
	Total Kjeld	Total Kjeldahl Nitrogen as		1 mg/L			
	Total Susp	ended Solids		1 mg/L			
	Turbidity			1 NTU			

Table 6: Results from water quality analysis for samples expressed as average values. *NOTE: E. Coli and Fecal Coliform are Geometric Mean, while the other values are Arithmetic Mean.*

Results from the Aqua-Tech laboratory showing the raw data used for developing Tables 5 and 6 are included in Appendix B.

Section 4. Conclusions and Recommendations

In this research project, we asked the following three research questions:

- Q1: What effect does an EVED installed on top of a wetland cell have on liquid effluent discharge as compared to a wetland cell without EVED?
- Q2: What is the operating experience of existing green-infrastructure buildings using green-roofs and onsite wastewater systems, in terms of reductions in liquid effluent discharge?
- Q3: If an EVED technique evaluated in this project reduces liquid discharge by 50% or more, then what modifications, if any, are needed in 285 regulations to allow use of EVED technologies, such as a semi-climate control greenhouse with forced-air ventilation system?

Based on the flow quantity data collected during the 365 day-observation period (from November 17, 2022, to November 16, 2023), answer to the Q1 and Q3 are as follows:

- A1: The EVED system studied in this project (a 300 square-feet wetland cell operating inside a semi-automated greenhouse with forced-air ventilation system) was able to reduce the liquid discharge <u>4.36 times (436%) more</u> than the non-EVED system (similar size wetland cell operating without the greenhouse, i.e., open wetland) when both the wetland cells were dosed with 100 GPD aerobic effluent. This significant increase in the reduction of the liquid discharge is the result of primarily two reasons: (1) increased net evapotranspiration (net-ET) rate achieve by enhanced plant growth inside the greenhouse, and (2) removal of the excess water addition due to rainfall on open wetland (8,160 gallons of rain along with 36,500 gallons of effluent during the yearlong observation period).
- A3: While the wetland operating in a semi-automated greenhouse with forced-air ventilation (EVED system) studied in this project was very effective in reducing the liquid discharge compared to the open wetland (non-EVED system), it did not reduce the liquid discharge by 50% or more on an annual basis. The annual average reduction rate was 48% for the EVED system compared to 11% for the non-EVED system. The lowest monthly reduction rate observed for the EVED system was 30% in April, while that for the non-EVED system was negative 61% due to rain input, *i.e.*, the monthly average effluent GPD was > influent GPD. While the results from this study indicate and support the use of a semi-automated greenhouse structure to reduce liquid discharge, thus reducing the land area requirements, they are not adequate to recommend regulatory changes at this point. Additional data collection is needed to study the performance of the EVED system at an influent flow rate >100 GPD to determine the sizing criteria in terms of the EVED system volume compared to the GPD influent flow rate. Such a study is planned for the TOGP-III under Project #3. Water quality data collected during the REEU program and during the past few weeks of this project period (during September and October 2023), indicate that both the EVED and non-EVED systems can treat the aerobic effluent to indoor non-potable reuse water quality after final disinfection and polishing necessary to meet the esthetic and public health requirements. Thus, it is possible to integrate use of the EVED system with the reuse system to get additional reduction in liquid discharge quantity.

Based on the visual observations made of a green roof operating in downtown Houston, Q2 is answered as following:

A2: While the experience in using a green roof for disposal of AC condensate is quite positive at a large commercial facility (The Post) in downtown Houston, such a structure is not adequate for disposal of aerobically treated effluent due to potential for human contact during excessive rainy days. It is also important to note that the excess (unused) AC condensate at the Houston facility is discharged into the city storm drainage system.

The following five recommendations are made for further investigation of liquid discharge reduction concepts:

- 1. Continue the flow data collection of the EVED and non-EVED systems for at least two more years with increased influent flow volume up to 350 GPD and develop sizing criteria in terms of optimum volume of the greenhouse needed to reduce maximum gallons per day liquid discharge in relation to the influent flow volume.
- 2. Integrate the use of an EVED system with indoor non-potable reuse of treated wastewater for toilet flushing and for growing consumable vegetables, to maximize the reduction of liquid discharge and thoroughly investigate non-potable reuse water quality and the quality of vegetables to ensure their quality for meeting public health standards.
- 3. Study the air quality inside the greenhouse to determine potential for public health concerns from airborne pathogens when the effluent is released using fogging nozzles to maximize humidity inside the greenhouse. NOTE that this idea to use fogging nozzles to maximize humidity inside the greenhouse was recommended by one of the TOGP advisory board members, however, was not implemented due to the concerns raised about the potential public health impact as our research facility is a public place.
- 4. Conduct a field demonstration related to a "dual use" drainfield area concept, whereby the land area used for a parking lot or something similar can also be used for a drainfield, thus reducing the demand for a dedicated land area for effluent disposal systems. One of the leading companies in the onsite wastewater industry is ready to offer technical assistance and design guidance for such a demonstration in Texas.
- 5. Finally, a design concept for a drip system installed at a depth greater than five feet (deep installed drip system) has been successfully used in Virginia for more than ten years, which is worth studying in Texas. A demonstration of this concept at our research center would allow us to evaluate this concept and develop design standards for Texas. This concept, if successful would allow the use of drip systems in areas that are deemed unsuitable under the current regulations and industry standards for use of drip systems.

Appendix-A Quarterly Reports

During the grant period, eight quarterly progress reports were submitted. All those reports are included in this Appendix.

Quarterly Progress Report #1 Work Period: November 5, 2021 – November 30, 2021

For Texas On-Site Sewage Facility (OSSF) Research Contracts #582- 22-31143, #582-22-31192, and #582-22-10767

Reduction of wastewater effluent from on-site sewage facilities Understanding problems and identifying solutions for Texas OSSFs using drip irrigation A sampling program to collect and store data for addressing wastewater treatment challenges at RV parks

> Report submitted to: Donna Cosper, P.E., Project Manager Program Support and Texas OSSF Research Grant Program Texas Commission on Environmental Quality P.O. Box 13087, MC - 235 Austin, Texas 78711-3087 Donna.Cosper@tceq.texas.gov

> > Report Submitted by:

Anish Jantrania, Associate Professor & Extension Specialist Gabriele Bonaiti, Extension Program Specialist June Wolfe III, Associate Research Scientist

> Texas A&M AgriLife Research & Extension ajantrania@tamu.edu g.bonaiti@tamu.edu jwolfe@brc.tamus.edu

December 15, 2021

Following tasks were completed during the first quarter of these projects:

- 1. Project contracts were signed, and funding accounts were established by the Texas A&M Extension Services and Texas A&M AgriLife Sponsored Research Services. Appendix A contains the signature page of each contract.
- 2. A Texas On-Site Sewage Facility (OSSF) Grant Program (TOGP) Advisory Committee Meeting was held to review results from the first round of TOGP projects funded by the Texas Commission on Environmental Quality (TCEQ) under Request For Grant Applications (RFGA) Number 582-19-93772 and to discuss plans for the second round of TOGP projects funded by TCEQ under RFGA Number 582-21-10767. The meeting was conducted at the Texas A&M RELLIS Campus in Bryan on November 10, 2021, from 10am to 3pm. Twenty-one people representing academic, onsite wastewater industry, and Texas regulatory interests were in attendance.

In the morning session, Principal Investigators (PI) Jantrania, Bonaiti, and Wolfe presented Blackwater Reuse, Low Pressure Drip, and Aerobic Treatment Unit research results and findings, respectively. TOGP Advisory Committee comments and interests were noted and considered during preparation of the final reports. At this time, it was also learned that contracts for the second round of TOGP research projects had been finalized.

During the afternoon session, PIs discussed preliminary plans and methodologies for the upcoming projects funded through the TOGP's second round RFGA. TOGP Advisory Committee comments and interests were noted and will be included as the projects progress. The meeting concluded with a visit to the RELLIS OSSF Research and Training Center where the group discussed the upcoming activities and observed the facility's amenities for conducting research, providing demonstrations, and supporting education and work-force development programs.

Overall, the TOGP Advisory Committee was pleased with the Texas A&M OSSF Team's ability to deliver quality research and recommended supporting the Team's future activities. Appendix-B contains the meeting agenda and pictures taken during the day.

Appendix – A: Contract signature pages

TCEQ Contract: 582-22-31143

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Contract Signature Page

TCEQ Contract 582-22-31143: Texas On-Site Sewage Facility Research Grant

The Maximum TCEQ Obligation is \$106,115.00

The Effective Date is the date of last signature.

The Expiration Date is 08/31/2023.

Parties to the Contract	Texas Commission on Environmental Quality (TCEQ)	Texas A&M AgriLife Extension Service
By (Authorized Signature)	Jon J. An	Digitally signed by Chalin Kay Date: 2021.11.02 14:01:48-05700
Printed Name	JARED L. WARE 900 Keith Sheedy 9%	for Julie Bishop
Title	ঞ্জন Acting Deputy Director	Associate Executive Director
Date of Signature	11/05/2021	11/2/2021
Vendor ID Number		17460005378
Procurement and Contracts Representative (Authorized Signature)	aaron Stoke	
Printed Name	Aaron Stoke	
Public Purchasing Certification	СТРМ06151707	
Date	Nov. 2, 2021	

Contract Name: Texas On-Site Sewage Facility Research Grant

Page 1 of 44

TCEQ Contract: 582-22-31192

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Contract Signature Page

TCEQ Contract 582-22-31192: Texas On-Site Sewage Facility Research Grant

The Maximum TCEQ Obligation is \$106,089.00

The Effective Date is the date of last signature.

The Expiration Date is 08/31/2023.

Parties to the Contract	Texas Commission on Environmental Quality (TCEQ)	Texas A&M AgriLife Extension Service
By (Authorized Signature)	Jun J. On	Digitally signed by Bbb Kath Date: 2021.11.03 13:30:49-05'00'
Printed Name	JARED L WARE 24/ Keith Sheedy	for Julie Bishop
Title	्रेभू/ Acting Deputy Director	Associate Executive Director
Date of Signature	11/05/2021	11/3/2021
Vendor ID Number		17460005378
Procurement and Contracts Representative (Authorized Signature)	aaron Stoke	
Printed Name	Aaron Stoke	
Public Purchasing Certification	CTPM06151707	
Date	Nov. 3, 2021	

Contract Name: Texas On-Site Sewage Facilities Research Grant

Page 1 of 50

TCEQ Contract: 582-22-10767

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Contract Signature Page

TCEQ Contract 582-22-10767: Texas On-Site Sewage Facility Research Grant

The Maximum TCEQ Obligation is \$ 212,246.00

The Effective Date is the date of last signature.

The Expiration Date is 08/31/2023.

Parties to the Contract	Texas Commission on Environmental Quality (TCEQ)	Texas A&M AgriLife Research
By (Authorized Signature)	Jur J. At-	Digitally signed by Lesli Kerth Holi KAM Date: 2021.11.02 13:21:18-05'00'
Printed Name	JAREO L. WARE OF Keith Sheedy Or	for Julie Bishop
Title	9७४ Acting Deputy Director	Associate Executive Director
Date of Signature	11/05/2021	11/2/2021
Vendor ID Number		17460005410
Procurement and Contracts Representative (Authorized Signature)	aaron Stoke	
Printed Name	Aaron Stoke	
Public Purchasing Certification	CTPM06151707	
Date	Nov. 2, 2021	

Contract Name: Texas On-Site Sewage Facility Research Grant

Page 1 of 51

Appendix – B: TOGP Advisory Committee Meeting agenda and photos

AGENDA

TOGP discussion meeting #3

Wednesday November 10, 2021 10:00 AM – 3:00 PM Ag & Workforce Education Building Room 1102, Texas A&M RELLIS Campus, 1244 7th Street Bryan, TX 77870

10:00 – 10:30	Welcome, Introduction, Updates on all three projects Anish Jantrania and all participants
10:30 – 11:00	Project #1 (RT 2.3.1 and RT 2.3.2 – ATU) Results and Discussion June Wolfe
11:00 – 11:30	Project #2 (RT 2.3.3 – LPD) Results and Discussion Gabriele Bonaiti
11:30 – Noon	Project #3 (RT 2.3.4 – Reuse) Results and Discussion Anish Jantrania
Noon – 1:15	LUNCH and Discussion
1:15 – 2:15	Group Discussion focused on the final draft report and TOGP Round 2 Projects Anish Jantrania and all participants
2:15 – 3:00	Visit the Research Site (OSSF Center)
Around ~ 3:00	Adjourn (From the OSSF Center)

The Texas A&M AgriLife OSSF Team presents results from first round TOGP projects and discusses plans for second round TOGP projects during the Texas Onsite Grant Program Advisory Committee meeting held at the RELLIS Campus on November 10, 2021. <u>Top</u>: presentations; <u>Bottom</u>: field visit to the RELLIS OSSF Research and Training Center.

Quarterly Progress Report #2 Work Period: December 1, 2021 – February 28, 2022

For Texas On-Site Sewage Facility (OSSF) Research Contract #582- 22-31143

Reduction of wastewater effluent from on-site sewage facilities

Report submitted to: Donna Cosper, P.E., Project Manager Program Support and Texas OSSF Research Grant Program Texas Commission on Environmental Quality P.O. Box 13087, MC - 235 Austin, Texas 78711-3087 Donna.Cosper@tceq.texas.gov

Report Submitted by:

Anish Jantrania, Associate Professor & Extension Specialist Texas A&M AgriLife Extension & Research <u>ajantrania@tamu.edu</u>

March 15, 2022

The following tasks were completed during Year 1 Quarter 2:

- 1. Initiated search for a vendor to design and construct a greenhouse at the research center, met with one vendor who is interested in offering his design-build service and he visited the center to get details on the size of the wetland where greenhouse is proposed. Plumbing to divert ATU effluent to the wetland cells, where the greenhouse will be added, was completed.
- Started discussions with greenhouse facilities managers operating on TAMU west-campus. A set of small greenhouses is operating on the roof of Building #1515 (Plant Pathology and Microbiology Building) while a standalone large greenhouse is operating on the roof of Building #1516 (Horticulture Field Laboratory). Both are good candidates for investigation to determine water loses. (See photos in Appendix A).
- 3. A new idea is being conceptualized related to "dual-use" drainfield area. Discussion with a private company that offers design specifications and construction materials for this concept has started. Dual-use systems will allow OSSF users to use the drainfield area for other beneficial use such as a parking lot. NOTE: TAC 285 regulations may prohibit this, however, discussions outside Texas indicate that this concept is utilized specifically for commercial projects where land is at a premium. We plan to explore this concept further during next quarter before making any decision for including it in this project.
- 4. Learned about a LEED Certified commercial building in Houston that has Green Roof and Reuse system to conserve water. We plan to explore this situation further during the next quarter and schedule a site visit to determine if this facility would add benefit to this project.

The following tasks will be addressed during Quarter 3:

- 1. Finalize and submit QAPP for TCEQ review along with the other two projects.
- 2. Evaluate proposals for at least two vendors to build a greenhouse at the Center.
- 3. Develop and install a metering device to control and measure greenhouse influent.
- 4. Explore the idea of using a commercial facility parking lot as a drainfield area and prepare a short report for consideration by the advisory group
- 5. Visit the commercial building in Houston that has a green roof and reuse system in use for water conservation, part of LEED certification.

Appendix – A: Examples of greenhouse on roof of two buildings on TAMU West Campus:

Building #1515, multiple greenhouses on roof top

Building #1516, one large greenhouse on roof top

Quarterly Progress Report #3 Work Period: March 1, 2022 – May 30, 2022

For Texas On-Site Sewage Facility (OSSF) Research Contract #582- 22-31143

Reduction of wastewater effluent from on-site sewage facilities

Report submitted to: Donna Cosper, P.E., Project Manager Program Support and Texas OSSF Research Grant Program Texas Commission on Environmental Quality P.O. Box 13087, MC - 235 Austin, Texas 78711-3087 Donna.Cosper@tceq.texas.gov

Report Submitted by:

Anish Jantrania, Associate Professor & Extension Specialist Texas A&M AgriLife Extension & Research ajantrania@tamu.edu

June 15, 2022

The following tasks were completed during Year 1 Quarter 3:

- 5. Continued search for a vendor to design and construct a greenhouse at the research center, received a quotation from one vendor located in Alabama, see details in Appendix-A. Since the quoted price for installation of a greenhouse is more than \$55K, it will neither be affordable for this project or for a typical homeowner who may be interested in using such an option, in future depending on the results of this project.
- 6. Met with the research assistant Cooper Svajda, who manages operations of greenhouses on the roof of Building #1515 (Plant Pathology and Microbiology Building). Cooper has provided valuable suggestions and indicated that he would do search on "Hoop Houses" which may be a simpler and affordable way to go for this project. I will stay in touch with Cooper during the next quarter to get additional information and quotations for a hoop house. Cooper has received details on the dimensions of the wetland cell (Appendix-B for details) that we are planning to use for installation of a greenhouse structure.
- 7. Had a daylong meeting in Denton County with the DR of Denton County, Leslie Freeman, during which one of the sites visited would be a potential candidate for installation of an effluent dispersal system under a paved parking lot. Leslie has shared details of the site including preliminary soil information and his notes from the "pre-development" meeting with the client who is planning to build a store on that site. Once the project moves forward, Leslie will share the concept with the client and organized a meeting with the OSSF designer to discuss the ideas of conducting a field scale research project.
- 8. Requested assistance from the AgriLife Director for Facilities & Construction, David DeLeon, who has helped with the installation of the field laboratory at our center last year. David visited our center last month to get more information on our plans for the greenhouse installation and he has agreed to offer his help on moving our project forward next quarter. He will send his "greenhouse" expert from his team to meet with us early June.
- 9. Worked with other Dr. Wolfe on finalizing the QAPP document, which was submitted to TCEQ for review in May.

The following tasks will be addressed during Quarter 4:

- 6. Work with the AgriLife facilities and construction team as well as with Cooper Svajda to get more affordable option for installation of the greenhouse.
- 7. Visit the Wooster Polytechnic Institute campus during July to learn more about their energy efficient evaporating system, which may be helpful in the greenhouse to reduce humidity.
- 8. As far as possible, complete installation of a greenhouse and metering devices at the Center to start data collection at the start of the next quarter.
- 9. Visit the commercial building in Houston during July ASABE meeting to learn more about that project and possible addition to this research project.

Appendix A – Quotation received for installation of a greenhouse for this project based on the dimension details shown in Appendix-B:

Gothic Greenho			Mobile 800-531-4769 251-471-	O Box 1564 , AL 36633
	GREENHOUSE PRO	POSAL		
Date: Presented By: Proposal Valid: Proposal Customer #: Quote To:	5/23/2022 W.H.S Valid thru July 19th, 2022 A A.Jantrania-TX.77087 Anish Jantrania RELLIS Campus, Texas A&M Univ.			
Telephone: Cell:	Bryan, TX. 77807 254-774-6014		B	
E-Mail:	ajantrania@tamu.edu			
Primary Standard	Structure, Cover, Door ~ Materials Only	(Delivered)		\$27,639.50
and the second se	ECIFICATIONS	nding' style Greenhous	Se .	
Frame Dimensions OD		l lifetime warranty Hgt. x 5' 6" Sidewall H I foundation (provided	gt & verified	-
Frame Dimensions OD Roof Pitch Load	CIFICATIONS Standard CC Aluminum Frame with limited 12' 8-1/2" W x 24' 11-1/2"L x 8' 6-3/4" *Ridge ~ designed to mount on an approx. TBD" H *Add foundation wall height to Ridge Hgt 5 to 12 32# Ground Snow & 85 mph Wind Load Rat	l lifetime warranty Hgt. x 5' 6" Sidewall H I foundation (provided to obtain final overall l	gt & verified	ade. Included
Frame Dimensions OD Roof Pitch	ECIFICATIONS Standard CC Aluminum Frame with limited 12' 8-1/2" W x 24' 11-1/2"L x 8' 6-3/4" *Ridge ~ designed to mount on an approx. TBD" H *Add foundation wall height to Ridge Hgt 5 to 12	l lifetime warranty Hgt. x 5' 6" Sidewall H I foundation (provided to obtain final overall l	gt & verified	ade. Included
Frame Dimensions OD Roof Pitch Load Optional	ECIFICATIONS Standard CC Aluminum Frame with limited 12' 8-1/2" W x 24' 11-1/2"L x 8' 6-3/4" *Ridge ~ designed to mount on an approx. TBD" H *Add foundation wall height to Ridge Hgt 1 5 to 12 <u>32# Ground Snow & 85 mph Wind Load Rat</u> Upgrade to a 103 MPH Wind Load	l lifetime warranty Hgt. x 5' 6" Sidewall H I foundation (provided to obtain final overall l	gt & verified hgt from gra	ade. Included \$2,652.00
Frame Dimensions OD Roof Pitch Load <i>Optional</i> Frame Color	Standard CC Aluminum Frame with limited 12' 8-1/2" W x 24' 11-1/2"L x 8' 6-3/4" *Ridge ~ designed to mount on an approx. TBD" H *Add foundation wall height to Ridge Hgt f 5 to 12 32# Ground Snow & 85 mph Wind Load Rat Upgrade to a 103 MPH Wind Load 'Not' included in Total	I lifetime warranty Hgt. x 5' 6" Sidewall H I foundation (provided to obtain final overall I ting	gt & verified hgt from gra	Included \$2,652.00 Included
Frame Dimensions OD Roof Pitch Load Optional Frame Color Glazing	Standard CC Aluminum Frame with limited 12' 8-1/2" W x 24' 11-1/2"L x 8' 6-3/4" *Ridge ~ designed to mount on an approx. TBD" H *Add foundation wall height to Ridge Hgt 1 5 to 12 32# Ground Snow & 85 mph Wind Load Rat Upgrade to a 103 MPH Wind Load 'Not' included in Total Standard Colors: White, Green, or Brown	I lifetime warranty Hgt. x 5' 6" Sidewall H I foundation (provided to obtain final overall I ting	gt & verified hgt from gra	Included \$2,652.00 Included Included
Frame Dimensions OD Roof Pitch Load Optional Frame Color Glazing Eave Design	CIFICATIONS Standard CC Aluminum Frame with limited 12' 8-1/2" W x 24' 11-1/2"L x 8' 6-3/4" *Ridge ~ designed to mount on an approx. TBD" H *Add foundation wall height to Ridge Hgt f 5 to 12 32# Ground Snow & 85 mph Wind Load Rat Upgrade to a 103 MPH Wind Load 'Not' included in Total Standard Colors: White, Green, or Brown Roof, Sides & Ends ~ Twin-Wall Insulated 6mm	I lifetime warranty Hgt. x 5' 6" Sidewall H I foundation (provided to obtain final overall I ting	gt & verified hgt from gra	Included \$2,652.00 Included Included Included
Frame Dimensions OD Roof Pitch Load Optional Frame Color Glazing Eave Design Ridge Vents	Standard CC Aluminum Frame with limited 12' 8-1/2" W x 24' 11-1/2"L x 8' 6-3/4" *Ridge ~ designed to mount on an approx. TBD" H *Add foundation wall height to Ridge Hgt f 5 to 12 32# Ground Snow & 85 mph Wind Load Rat Upgrade to a 103 MPH Wind Load 'Not' included in Total Standard Colors: White, Green, or Brown Roof, Sides & Ends ~ Twin-Wall Insulated 6mm Straight Eave Design	I lifetime warranty Hgt. x 5' 6" Sidewall H I foundation (provided to obtain final overall I ting Polycarbonate	gt & verified I hgt from gr. ADD	

Optional Accessor	ies:	*Items below 'NOT' included	in total	
Ventilation System:	Includes: 1 ea. 14" Exhaust w/Thermostat. & Penetratio (Metal Shutter Fans Painted		ADD	\$2,280.00
2 ea.	Insect Screens for Motorize	d Intake Shutters	ADD	\$390.00
4 ea.	24" x 48" Side Wall Vents w	/Passive Auto Openers	ADD	\$2,280.00
4 ea.	Insect Screens for Side Wal	l Vents	ADD	\$780.00
1 ea.	HD-45 ~ Nat'l or LP t Gas He	ADD	\$1,805.00	
1 ea.	Decorative Ridge Cresting v	ı/One End Finial	ADD	Inquire
TOTAL COST ESTIN	ATE ~ Materials Only	tnd. Greenhouse, Cover, Vent, Door 8	Føt	\$27,639.50
	O	ptions, Upgrades & Accessories ngineer Stamped Drawings ~ alc Pkg ~ if needed to obtain building		10,187.00 Inquire Inquire
		0		
	U	ecorative Accessories		Inquire
		ecorative Accessories Sub-Total:		Inquire
			Transfer	TBD
		Sub-Total:	Transfer	Inquire TBD TBD TBD
	Option A 25	Sub-Total: & Discount if paid w/ Cert. Ck or Wire Total R	-	TBD TBD
	Option A 22 Option B 50	Sub-Total: & Discount if paid w/ Cert. Ck or Wire Total R 0% Deposit w/Bal. due 2 weeks prior t	o shipping	TBD TBD TBD
	Option A 22 Option B 50	Sub-Total: & Discount if paid w/ Cert. Ck or Wire Total R	o shipping	TBD TBD

Engineer Stamped Drawings ~ if needed to obtain building permit	ADD	Inquire
Calc Pkg ~ if needed to obtain building permit	ADD	Inquire
Installation	ADD	\$29,283.00
1 ea. TR-12 x24-TWPC ~ TR series 'Free-Standing' style Greenhouse		
4 ea Roof Vents		
1 ea Single Storm Door Unit		
1 ea. 14" Exhaust Fan, 2 ea. Motorized Intake Shutters, & Insect Screens		
Hanging gas heater		
4 ea 24" x 48" Side Wall Vents &Insect Screens		
1 set Decorative Ridge Cresting w/One End Finial		
GAG, Inc. is not responsible for: Demo and removal of old greenhouse.		
Site Preparation – Including, but not limited to, clearing of old materials, four site.	ndation work, and	l leveling of
* Utilities and/ or wiring– Including, but not limited to, running of utilities from plumbing of structure, Conduit electricity and electrical connections, water		
gas		
connections and/ or venting of heater.		
*Storage – Including, but not limited to, storing of materials prior to and duri	ng installation.	
*Removal of crating materials and job debris away from job site.		antena an inc
*Building Permits - Including, but not limited to, construction permits, fire or judgement of fitness of previously existing structures at the Location.	occupancy certifi	cations, or any
TERMS:		
A 2% Full Payment with Order Discount if paid by Certified Check or Wire Tr deposit and balance due with order is required. Customer will be responsibl inspection of materials as they arrive at the job site. Allow approx. 28 +week of Eng. Drawings.	e for the unloading	ng and
DISCLAIMER: PRICE GIVEN EXCLUDES: INSTALLATION, TAX, UNLOADING OF SITE PREPARATION, CAULK, ANCHORS, MASONRY, PE STAMP, ELECTRIC W & DUCTING, FINAL CLEANING/WASHING, AND ANY OTHER ACCESSORIES/SE QUOTE. PRICES SUBJECT TO CHANGE WITHOUT NOTICE. CHECK LOCAL BUI ORDERING.	IRING & HOOKUP RVICES NOT SHO	PS, PLUMBING

Material ~ \$27,639.50 + Installation ~ \$29,283.00; thus Total ~ \$56,922.50

Appendix-B: Dimension details shared with public and private sectors for obtaining pricing.

Quarterly Progress Report #4 Work Period: June 1, 2022 – August 31, 2022

For Texas On-Site Sewage Facility (OSSF) Research Contract #582- 22-31143

Reduction of wastewater effluent from on-site sewage facilities

Report submitted to: Donna Cosper, P.E., Project Manager Program Support and Texas OSSF Research Grant Program Texas Commission on Environmental Quality P.O. Box 13087, MC - 235 Austin, Texas 78711-3087 Donna.Cosper@tceq.texas.gov

Report Submitted by:

Anish Jantrania, Associate Professor & Extension Specialist Texas A&M AgriLife Extension & Research ajantrania@tamu.edu

September 15, 2022

The following tasks were completed during Year 1 Quarter 4:

- 10. Worked with the AgriLife Director for Facilities & Construction, David DeLeon, his team members, and Research Assistant Cooper Svajda. Identified a company in San Antonio (Greenhouse etc., <u>https://www.greenhousestx.net/</u>) offering an ideal product for this project. Received a quotation for the "11x24 Big Barn Greenhouse". Completed assessment of project needs and finalized a bid to purchase and install greenhouse on one of the two wetland cells. See Appendix-A, photos show the before and after greenhouse installation with construction photos.
- 11. Worked with Ryan Gerlich, TAMU OSSF Team member, to determine best method to measure gravity outflow from wetland cells. After evaluating several options, Ryan concluded that a modified "Dipper", available from the PolyLock, combined with an event-counting datalogger, available from Hobo, is best option for measuring and recording discharge flow from the wetland cells. Ryan completed installation of one Dipper for the wetland cell with the Greenhouse (experimental cell) and demonstrated that the product accurately measures a 1.5 Gallons per tip from the wetland cell. The datalogger will be installed next which will include an electronic switch attached to the Dipper which will count and record each time the dipper empties, thus allowing discharge flow measurement per month. NOTE we have received two additional Dippers from PolyLock that will allow us to install one on the other wetland cell (Control Cell) and replace the one that Ryan used for the experimental cell. See photos in Appendix-B showing details of the Dipper and installation in the experimental cell.
- 12. With the greenhouse installed and the wetland discharge flow measurement system designed, the experimental set-up almost complete. The experiment will focus on measuring the wetland effluent discharge flow, on a monthly basis, from the experimental wetland cell (wetland + greenhouse) and the control wetland cell. Difference between these readings will provide an indication of effluent flow reduction attributable to a greenhouse installed on a wetland designed based on loading rates prescribed in current 285 rules.
- 13. Organized a meeting with the Drip Project PI (Dr. Bonaiti) and local drip system designer/distributor (Mr. Jim Prochaska, JNM Technologies) to discuss ways to conduct both the Drip and the Effluent Flow Reduction projects simultaneously at the TAMU AgriLife OSSF Center. Based on discussions, both wetland cells will be dosed using ~300 ft of drip tubing (maximum possible) laid out uniformly ~6 inches below the gravel. Conducting project efforts is expected to provide synergism with respect to cost and time. More on this in the next report.
- 14. Worked with Dr. Wolfe to address draft QAPP comments received from TCEQ. Returned an updated draft QAPP to TOGP for 2nd review on 18 August 2022.

The following tasks will be addressed during Quarter 5:

- 10. Finalize the flow rate calculations and hypothesis needed to test during this experiment; use the Evapotranspiration (ET) system sizing calculations from the current OSSF Regulations Section 285.33(b)(2) and the net evaporation rate for College Station presented in Section 285.91(7).
- 11. Work with Ryan and Dr. Wolfe on completing the flow measuring systems for both the wetland cells, calibrate the devices and start measuring the effluent flow.
- 12. Compete the installation of maximum allowable drip tubing on both the wetland cells and start time dosing both the cells with ATU effluent at 100 GPD monthly average flow as soon as the QAPP is finalized and approved by all parties.
- 13. Discuss the current status of the project with the TOGP advisory group during the 4th annual meeting on RELLIS Campus during the next quarter.
- 14. Work on scheduling a meeting with the building management company that is responsible for the commercial building in Houston that has a reuse plus the effluent flow reduction technology (green roof) installed several years back. (NOTE, this task has not been completed due to scheduling challenges with the building management company)

Appendix A – 11x24 Big Barn Greenhouse Installation at TAMU OSSF Research Center.

Before - Wetland cell on the left (with concrete sidewalls) ready for Greenhouse installation

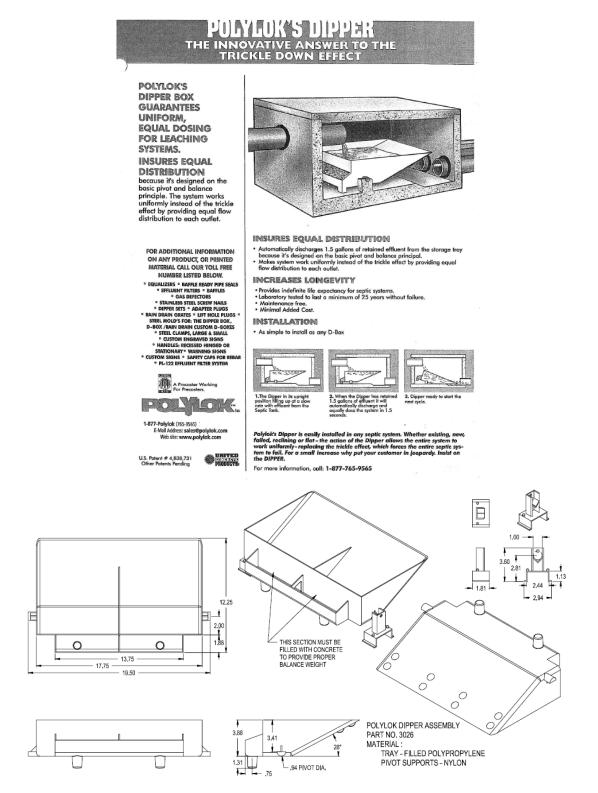
11x24 Big Barn Greenhouse installation day.

Photo on the left showing the wetland cell covered with the Greenhouse and big window at the back end, and on the right showing one of the two fans to be installed in the front windows.

View from the back end of the Greenhouse, note the large window at the back end has an adjustable opening mechanism to control the air flow through the Greenhouse.

After - View from the front, both the window in the front has fans and louvers that opens automatically when the fans are turn on at a set temperature point.

Next steps will be to set-up influent distribution systems in both wetland cells, connect two ATUs effluent pump tank with the influent distribution systems, re-plant the wetland cells, install the effluent flow measuring devices and start dosing the wetland cells 100 GPD ATU effluent. Data collection will begin after the QAPP is approved.



BEFORE GREENHOUSE

AFTER GREENHOUSE

Addition of the Greenhouse at our research facility will be quite useful for future projects related to Onsite Wastewater Reuse and we are looking forward to discussing ideas on how to build future reuse projects using this newly added Greenhouse during our meeting with the TOGP advisory group.

Appendix-B: Details on the "Dipper" from PolyLock to be used for the effluent flow measurement from both wetland cells.

Technical details on the "Dipper" from the PolyLock website <u>https://www.polylok.com/dipper-prod-128.html</u>

Dipper set on a riser lid, ready for installation in the wetland effluent collection tank.

Dipper with the concrete weight installed in the wetland effluent collection tank. (Video clip is also available to see how the flow will be measured).

NOTE – an electronic switch with a counter will be installed next, which will allow us to record number of times dipper tips per month, and Ryan confirmed that each tip = 1.5 gallons, which is also the weight of the concrete used in the small tray shown on the bottom left of the Dipper.

Quarterly Progress Report #5 Work Period: September 1, 2022 – November 30, 2022

For Texas On-Site Sewage Facility (OSSF) Research Contract #582- 22-31143

Reduction of wastewater effluent from on-site sewage facilities

Report submitted to: Donna Cosper, P.E., Project Manager Program Support and Texas OSSF Research Grant Program Texas Commission on Environmental Quality P.O. Box 13087, MC - 235 Austin, Texas 78711-3087 Donna.Cosper@tceq.texas.gov

Report Submitted by:

Anish Jantrania, Associate Professor & Extension Specialist Texas A&M AgriLife Extension & Research <u>ajantrania@tamu.edu</u>

December 15, 2022

The following tasks were completed during Year 2 Quarter 1:

- 15. Worked with Dr. Wolfe and Dr. Bonaiti to finalize the Quality Assurance Project Plan (QAPP) addressing current Texas Onsite Grant Program (TOGP) contracts (i.e., 582-22-10767 Real world RV/ATU data, 582-22-31192 Drip irrigation, and 582-22-31143 Effluent reduction). The signed QAPP became effective 4 October 2022.
- 16. Continued working with Ryan Gerlich, TAMU OSSF Team member, to finalize the wetland plant selection, purchasing of the plants from Houston Extension office, designing the drip layout for both the wetland cells, and finalizing operating instructions for the Greenhouse once all the installation work is completed. On October 20, 2022, both the wetland started receiving 100 GPD from the ATUs as planned. Before this date, the open cell wetland received 200 GPD of ATU effluent (combined flow from both the ATUs) while the Greenhouse wetland received 100 GPD tap water. TDS measurement taken on this day reflected the effects of ATU effluent (TDS values in ppm were 850 for tap water, 1060 for effluent from Greenhouse wetland, and 1600 for the effluent from open wetland). We plan to measure TDS values quarterly to see the effects on wetland cells. Appendix-A contains photos showing the status of the Greenhouse and Open Wetland Cells. NOTE the as of the end of this quarter, Greenhouse is operated only using the Temperature control system. We are still evaluating use of Humidity control system to work with Temperature control for operating the Greenhouse, along with use of dehumidification system.
- 17. Organize and conducted a day long TOGP Advisory Committee meeting on 12 October 2022 at the RELLIS Campus in Bryan. This was the fourth annual meeting held on RELLIS Campus, attended by 24 representatives from TCEQ and TOWA, to present progress reports regarding current TOGP projects and discuss other matters related to future of OSSF research program at TAMU. After the morning sessions and lunch indoor, the participants visited the research facility to see the progress on E-Flow and DRIP projects. Appendix-B contains several photos from the center visit.
- 18. After several unsuccessful attempts to visit the green roof facility in Houston area, I was able to organize a day long visit with the Houston Green Infrastructure coordinators in late October who gave me a detailed tour of the Green roof located on top of the Post Houston (https://www.posthtx.com/) known as the Skyfarm, a one-acre urban food farm operated by Blackwood Educational Land Institute (https://blackwoodland.org/the-skyfarm-at-posthouston/). Appendix-C contains several photos from the site visit. The facility is built and operated to maximize use of condensate water for irrigation needed in the farm operated on the roof. This facility could make a very good place to monitor the amount of water lost through ET from the roof. However, there are no water meters installed at this facility to monitor the flow nor it is possible to monitor the discharge from the roof of excess water. Based on the observations made during my visit where I noticed several wet spots and standing water pool, I have concluded use of green roof, or a green wall should be ruledout of consideration for flow-reduction techniques because sizing will not be any different from the current sizing for ET beds which is not feasible for areas with negative ET rates. Note that a green wall project operated on TAMU main campus also discharges water during wet/humid weather conditions as shown in photos included in Appendix-C.

19. Finalized the mathematical model for assessing the effluent flow reduction technology (i.e., wetland operating in the greenhouse OR <u>Enhanced Vaporization Effluent Disposal</u> or EVEDTM) by comparing the daily discharge quantities (Gallons Per Day) from the two wetland cells, one with the Greenhouse and one without. Calculations shown in the following table:

iono wing tuoie.		1	1						
Wetland Dimensions				Greenhouse		7.48	Gal/cub.ft	•	
L=	25	ft		L=	24	0.6	gpd/sq.ft.		
W =	12	ft		W =	11				
D =	1	ft water		H =	9	Avg			
Void =	50%			Void =	100%				
Surface Area =	300	sq.ft.		Surface Area =		Calculate	SA of Build	ing?	
Water Volume =	150	cub.ft.		Volume =	2376	cub.ft.			
College Station Data									
Evap - Rainfall =	0.12	inches/da	y						
	0.01	cub.ft./da	y/sq.ft.						
Loading Rate for ET Bed =	0.07	gpd/sq.ft.	in College	e Station area					
For a home with	225	GPD Flow							
	3,008	sq.ft. min	ET bed ne	eded					
WE GOT ONLY	300	sq.ft. of W	/etland be	eds!					
Research Question: CAN T	HIS AREA	REQUIREM	<mark>ENT BE RE</mark>	DUCED BY NEW E-FLO	<mark>W DESIGN</mark>	s?			
GPD for Wetland ONLY=	22			GPD with Greenhous	45	2	times; ASS	UMED VA	LUE
						50%	If true the	n the area	neede
GPD Inflow =	100			GPD Inflow =	100				
GPD Outflow =	78	COMPA	RE THESE	GPD Outflow =	55	CHECK AC	TUAL VALU	ES AT THE	END

Inflow and outflow data collection systems were installed and calibrated during the month of November and data collection started on November 17th. Following table shows the difference in daily effluent quantity from both the wetland cells and rainfall:

	Greenh	Greenhouse Wetland				Open Wetland			RAIN
Obs #	Date	Avg Temp	Effluent GPD		Obs #	Date	Avg Temp	Effluent GPD	inch
1	11/17/22	57.3	36		1	11/17/22	51.3	15	
2	11/18/22	60.6	51		2	11/18/22	51.9	80	
3	11/19/22	48.6	77		3	11/19/22	43.0	130	
4	11/20/22	52.7	72		4	11/20/22	43.3	85	
5	11/21/22	50.5	51		5	11/21/22	44.6	124	0.84
6	11/22/22	60.3	76		6	11/22/22	51.0	87	
7	11/23/22	69.8	55		7	11/23/22	61.8	77	
8	11/24/22	65.7	100		8	11/24/22	63.9	154	0.62
9	11/25/22	62.5	95		9	11/25/22	59.8	81	
10	11/26/22	64.2	86		10	11/26/22	56.2	272	1.1
11	11/27/22	63.3	69		11	11/27/22	54.8	142	
12	11/28/22	65.4	62		12	11/28/22	58.2	122	
13	11/29/22	75.0	66		13	11/29/22	71.9	85	
14	11/30/22	60.9	52		14	11/30/22	50.2	81	

Average daily effluent discharge from the Greenhouse Wetland was 68 GPD and that for Open Wetland was 110 GPD, indicating effects of rainy days in mid-November.

20. Started conversation with a homeowner in central Texas who also has a business building rainwater harvesting tanks and an OSSF for wastewater management. They are interested in "donating" their home to conduct a field research and demonstration project that could combined previously TOGP funded REUSE project and the current E-FLOW project. To minimize the land area required for effluent disposal and to maximize reuse potential for treated effluent, we believe that combining these two concepts is the way to move forward and develop design, construction, and operation recommendations for a new type of OSSF in Texas. More on this subject in the next quarterly project report.

The following tasks will be addressed during Quarter 6:

- 15. Ensure that the flow data collection systems (flow meters on ATU pumps and Dippers on the wetland discharge end) are working properly with no hick-ups and decide when to officially start the data collection for the final reporting. Also, work with Dr. Bonaiti to start collecting rainfall data from the automatic rainfall gauge that was used in previously funded LPD project. This will allow for better understanding of effects of rain events on effluent discharges from both the wetlands.
- 16. Investigate various instrumentations available for measuring humidity inside and outside the Greenhouse and acquire one that is most suitable for use in this project. Also, look into use of a dehumidifier inside the Greenhouse to make water during high humidity conditions and connect operation of one of the fans and the humidifier when humidity exceed a predetermined value. This will help us study effects on flow reduction by adding these items.
- 17. Train the new hire who is staring in early January to take responsibilities for data collection and field observations.
- 18. Start the process with the Texas A&M Office of Sponsored Research Services managers to send request to TCEQ for extending completion deadlines for this and the other two projects by nine months in order to get adequate time for proper completion of field work and data processing plus preparing final reports.
- 19. Continue discussion with the homeowner who is interested in field demonstration project to combine both REUS and E-FLOW project and try to find funding for such a project during next year or so.

Appendix A – Current status of the E-Flow Project Site.

Planting both inside and outside Greenhouse wetland cells (early October)

Plants' growth inside Greenhouse wetland in about a month (from early October to early November)

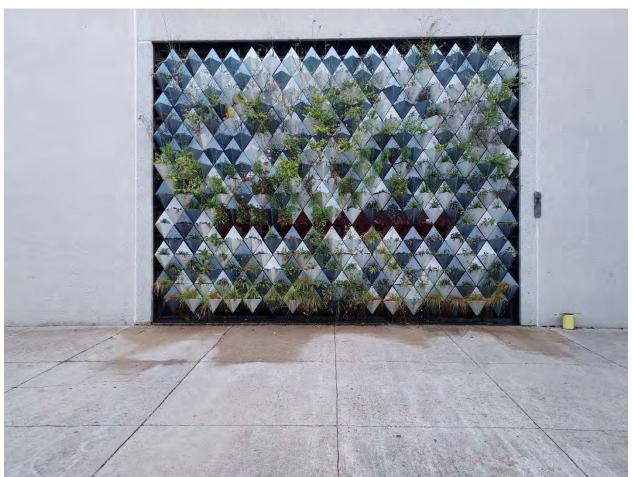
Photos taken on November 18th a few days after the first freeze on November 13th in BCS area, plants doing better inside Greenhouse than outside during cold temperatures.

Appendix-B: TOGP Group visiting the Research Center after the morning session during the 4th annual meeting on RELLIS Campus (top two pics) and visitors from Australia on the day after the TOGP meeting...

TOGP Group visiting the site during the afternoon of the 4th Annual Meeting on RELLIS.

Visitors from Australia inside the Greenhouse the day after the TOGP Meeting, October 13th ...

Appendix C: Photos from the visit to the Green Roof in Houston (October 25, 2022). Note that there no rainy days for more than week before this visit, however standing water was observed on the roof strongly indicating potential for surfacing if this concept and questioning if this concept should be considered for effluent flow reduction.



The building entrance and the LEED Certification signage

The Green Roof covering about one-acre space, and big wet spot indicating over irrigation and/or lack of ET losses.

Similar observations were made around the Green Wall that is in operation on the main campus.

Green Wall operating on TAMU Main Campus, showing wetness indication of excess irrigation (September 7, 2022)

Quarterly Progress Report #6 Work Period: December 1, 2022 – February 28, 2023

For Texas On-Site Sewage Facility (OSSF) Research Contract #582- 22-31143

Reduction of wastewater effluent from on-site sewage facilities

Report submitted to: Donna Cosper, P.E., Project Manager Program Support and Texas OSSF Research Grant Program Texas Commission on Environmental Quality P.O. Box 13087, MC - 235 Austin, Texas 78711-3087 Donna.Cosper@tceq.texas.gov

Report Submitted by:

Anish Jantrania, Associate Professor & Extension Specialist Texas A&M AgriLife Extension & Research <u>ajantrania@tamu.edu</u>

March 22, 2023

The following tasks were completed during Year 2 Quarter 2:

- 21. Data collection for inflow and outflow from both wetland cells continued during this quarter. Added an electric heater in the greenhouse to protect plants from winter freezing. Raw data from Hobo data logger are now available for both the wetland systems as well as the inflow data from ATUs. Monthly averages are calculated to determine the % reduction in flows from both wetland systems. Examples of raw data tables and the summary of monthly averages are shown in Appendix-A.
- 22. The greenhouse system experience freezing conditions in December, during which temperatures inside the Greenhouse dropped below 40 degrees and plants experienced stressful conditions. However, plants inside the Greenhouse were better overall than the plants outside (see Appendix-B).
- 23. In mid-January, relative humidity sensors were installed for measuring Relative Humidity (RH) as percent for both wetlands (i.e., inside and outside greenhouse). RH datalogging intervals are set to match the tipping bucket effluent dataloggers, once every 15 minutes. RH sensors began logging at 4PM on January 11, 2023. Average temperature and relative humidity data for this quarter are show in Appendix-A.
- 24. The greenhouse system experienced a pest infestation (i.e., spider mites) in February causing visible plant damage (see photos in Appendix-C). The TAMU Extension Plant Specialist was contacted for guidance. The use of soapy water was recommended as a low-toxicity solution. Two applications were made with some success. Additional, a stronger method may be employed (i.e., pesticide application) if the problem continues.
- 25. Mr. Josh Segura, a new Research Technician for the TAMU OSSF Research Center, was trained and will work as needed with Mr. Ryan Gerlich on data collection and management of both wetland systems.

The following tasks will be addressed during Quarter 7:

- 20. Review of the raw data set to ensure that flow parameters (inflow, outflow), temperature, and relative humidity data are properly synched (i.e., pre-set frequency of 15 minutes for temperature, relative humidity, and influent flow to match with ATU dosing frequency.
- 21. Investigate options to increase evapotranspiration (ET) rate inside the greenhouse with plans to implement them during Quarter 7. Selected option(s) will be implemented uniformly in both wetlands, inside and outside the greenhouse.
- 22. Continue investigation of options to eliminate pest infestation inside the greenhouse and implement options as necessary to resolve the situation.
- 23. Continue working with the Texas A&M Office of Sponsored Research Services managers on the request to TCEQ for extending completion deadlines and or budget revisions for

this and the other two projects by nine months to allow adequate time for proper completion of field work and data processing plus preparing final reports.

24. Continue discussion with the homeowner who is interested in field demonstration project to combine both REUSE and E-FLOW project and try to find funding for such a project during next year.

Appendix A:

Data from HOBO datalogger, processed, and stored in sp	preadsheet format – daily data example:
--	---

		Green	nhouse Wet	land				0	pen Wetlan	d		RAIN
Obs #	Date	Avg Temp	Avg RH%	Influent GPD	Effluent GPD	Obs #	Date	Avg Temp	Avg RH%	Influent GPD	Effluent GPD	GPD
1	11/17/22	57.3	N/A	102.4	36	1	11/17/22	51.3	N/A	99.5	15	
2	11/18/22	60.6	N/A	102.4	51	2	11/18/22	51.9	N/A	99.5	80	
3	11/19/22	48.6	N/A	102.6	77	3	11/19/22	43.0	N/A	98.5	130	
4	11/20/22	52.7	N/A	101.8	72	4	11/20/22	43.3	N/A	99.4	85	
5	11/21/22	50.5	N/A	85.6	51	5	11/21/22	44.6	N/A	83.0	124	
6	11/22/22	60.3	N/A	102.6	76	6	11/22/22	51.0	N/A	99.6	87	
7	11/23/22	69.8	N/A	100.7	55	7	11/23/22	61.8	N/A	99.3	77	
8	11/24/22	65.7	N/A	102.0	100	8	11/24/22	63.9	N/A	99.3	154	131
9	11/25/22	62.5	N/A	102.6	95	9	11/25/22	59.8	N/A	99.3	81	8
10	11/26/22	64.2	N/A	102.8	86	10	11/26/22	56.2	N/A	99.1	272	228
11	11/27/22	63.3	N/A	102.8	69	11	11/27/22	54.8	N/A	99.9	142	0
12	11/28/22	65.4	N/A	102.8	62	12	11/28/22	58.2	N/A	100.5	122	0
13	11/29/22	75.0	N/A	102.4	66	13	11/29/22	71.9	N/A	100.2	85	0
14	11/30/22	60.9	N/A	103.0	52	14	11/30/22	50.2	N/A	99.9	81	0
15	12/01/22	57.3	N/A	102.4	61	15	12/01/22	48.6	N/A	100.3	80	0
16	12/02/22	65.4	N/A	101.8	64	16	12/02/22	62.7	N/A	100.2	81	0
17	12/03/22	65.3	N/A	102.1	64	17	12/03/22	62.2	N/A	100.0	81	0

Monthly Average Summary Table and % Discharge Reduction Comparisons:

Aveage Influent and Discharge By Months								
		Greenhouse			Open		RAIN	
	Influent	Effluent	% Reduction	Influent	Effluent	% Reduction	GPD	
Nov-22	101	68	33%	98	110	-11%	53	
Dec-22	95	57	40%	94	76	19%	47	
Jan-23	105	65	38%	103	102	1%	17	
Feb-23	107	64	40%	106	104	1%	21	
Mar-23								
Apr-23								
May-23								
Jun-23								
Jul-23								
Aug-23								

NOTE: GPD (Gallons per Day) RAIN is calculated based on the open wetland size and monthly average rainfall recorded at the site.

Average Temperature and Relative Humidity data collected so far:

Aveage Temp and % RH By Months							
Greenh	ouse	Open					
Temp	%RH	Temp	%RH				
61.2	N/A	54.4	N/A				
64.9	N/A	61.9	N/A				
61.0	66.6	55.1	73.7				
63.5	67.7	56.5	74.8				

Appendix B – Effects of freezing weather on plants inside and outside greenhouse.

Photos taken on December 11, 2022 (before freezing conditions)

Photos taken on December 22, 2022 (during freezing conditions)

Photos taken on February 23, 2022 (second freezing event)

Appendix-C: Pest infestation inside the Greenhouse

Spider Mite infestation noticed inside the greenhouse (photo taken February 23, 2023)

Spider Mite infestation following two applications of soapy water (photo taken March 13, 2023).

Quarterly Progress Report #7 Work Period: March 1, 2023 – May 31, 2023

For Texas On-Site Sewage Facility (OSSF) Research Contract #582- 22-31143

Reduction of wastewater effluent from on-site sewage facilities

Report submitted to: Donna Cosper, P.E., Project Manager Program Support and Texas OSSF Research Grant Program Texas Commission on Environmental Quality P.O. Box 13087, MC - 235 Austin, Texas 78711-3087 Donna.Cosper@tceq.texas.gov

Report Submitted by:

Anish Jantrania, Associate Professor & Extension Specialist Texas A&M AgriLife Extension & Research <u>ajantrania@tamu.edu</u>

June 15, 2023

The following tasks were completed during Year 2 Quarter 3:

- 26. Data collection for inflow and outflow from both wetland cells continued during this quarter. Added a dehumidifier in the greenhouse to "harvest" water and to determine both quantity and quality of that water (see photos in Appendix-A). Greenhouse wetland monitoring is added to the REEU research platform thus the federal funds from that project will be used to pay for water quality monitoring. Monthly averages are calculated to determine the % reduction in flows from both wetland systems. A draft version of the average data table is included in Appendix-B. Note that the values presented in the draft table may change once we conduct our final analysis at the end of this project.
- 27. Attended the Texas Onsite Wastewater Association (TOWA) annual conference in Waco, TX from March 6 to 8 and delivered an oral presentation entitled "AgriLife Research and Extension Updates" and assisted in two other presentations, one made by Dr. Bonaiti on Drip Project and the other by Dr. Wolfe on RV/ATU project. All three presentations were well attended and there seems to be a great amount of interest in final reports for all three projects. During these presentations, we also made several contacts for future site visits to learn more about the challenges faced in these subjects.
- 28. Travelled to Hood County with Dr. Bonaiti and spent two days with the county health department staff visiting several sites to see operating conditions of existing drip systems and to see new installations. Purpose of this trip to really understand drip systems problems based on real-world experience by regulators, designers, and installer. Several photos from the site visits are included in Appendix-C. Information gathered from the site visits will be used to develop recommendations for improvement for drip design, installation, and operation later this year.
- 29. Traveled to the Dallas area with Dr. Wolfe and met with a private RV park owner/engineer interested in monitoring an aerobic/drip system. While Dr. Wolfe has offered his assistance in developing a monitoring plan for this site, I plan to work with the owner/engineer to design a different type of drip system based on the design concept presented in my book and based on my experience with this design that has been successfully operating in Virginia for more than 10 years. I plan to revisit this site later this year, time permitting.
- 30. Worked to get the Center ready for the REEU program in which 12 undergraduate students will be spending five weeks to learn about water quality sampling and analysis. This project is included on the research platform and students will collect water quality samples from the aerobic treatment unit that is feeding the wetland covered by the greenhouse, effluent from that wetland, as well as the dehumidify water to be collected from the dehumidifier. See the research plan details in Appendix-D.
- **31.** Continued discussion with the TAMU-SRS staff about getting the extension for completing this and the other projects. We will need six more months to complete all the work for all three projects.

The following tasks will be addressed during Quarter 8:

- 25. Continue review and analysis of the raw data set to ensure that flow parameters (inflow, outflow), temperature, and relative humidity data are properly synched and start recording the amount of dehumidify water removed from the Greenhouse as well as any effluent removed from the wetland cells for the REEU projects.
- 26. Continue dosing the wetland cells using the drip tubing to support the drip research project and to see if drip dosing enhances the evaporation losses.
- 27. Continue monitoring of the pest infestation inside the greenhouse and implement options as necessary to control the situation.
- 28. Continue working with the Texas A&M Office of Sponsored Research Services managers on the request to TCEQ for extending completion deadlines and or budget revisions for this and the other two projects by nine months to allow adequate time for proper completion of field work and data processing plus preparing final reports.
- 29. Continue discussion with the homeowner who is interested in field demonstration project to combine both REUSE and E-FLOW project and try to find funding for such a project during next year.

Appendix A – Difference between the two wetland cells and dehumidifier operation inside the Greenhouse to harvest atmospheric water.

Photos taken on April 19, 2023 (wetland vegetation growth more inside Greenhouse)

Photos taken on May 22, 2023 (Dehumidifier operating inside Greenhouse and water collected)

Photos taken on May 23, 2023 (water quality samples installed for REEU sample collection)

Appendix-B: Example of E-FLOW data recording spreadsheet, daily and monthly values.

Data from HOBO datalogger, processed, and stored in spreadsheet format – daily data example (note that the yellow high-lighted cells mean missing or erroneous data):

	(Greenhouse We	tland					Open Wetla	nd		RAIN
Obs # Date	Avg Te	emp Avg RH%	Influent GPE	D Effluent GPD	Ob	s # Date	Avg Ten	np Avg RH%	Influent GPD	Effluent GPD	GPD
04/15/23	79.1	68.3	106.3	0	150	04/15/23	75.2	67.3	104.7	58	0
04/16/23	72.9	57.0	105.8	0	151	04/16/23	62.7	49.1	104.9	55	0
04/17/23	71.4	62.2	106.1	77	152	04/17/23	63.4	57.5	105	55	0
04/18/23	73.4	70.9	107.3	52	153	04/18/23	68.5	70.0	104.9	57	5
04/19/23	77.2	73.6	107.2	53	154	04/19/23	72.6	75.5	104.9	60	0
04/20/23	75.5	84.0	13.7	86	155	04/20/23	71.9	85.8	13.3	515	427
04/21/23	74.4	77.0	58.1	87	156	04/21/23	68.2	80.5	56.8	124	5
04/22/23	73.6	64.3	35.6	53	157	04/22/23	67.3	60.5	32.2	55	0
04/23/23	68.5	67.6	0.0	0	158	04/23/23	59.2	71.1	0	0	0
04/24/23	70.6	68.8	0.0	27	159	04/24/23	60.3	70.2	0	60	0
04/25/23	72.8	74.9	17.6	104	160	04/25/23	66.7	74.1	17.3	69	0
04/26/23	77.0	77.7	106.6	97	161	04/26/23	72.0	81.8	103.7	181	415
04/27/23	74.2	74.8	106.5	105	162	04/27/23	66.4	77.6	102.7	708	174
04/28/23	69.9	76.4	106.5	69	163	04/28/23	65.2	80.8	103.4	270	164
04/29/23	67.4	65.3	62.4	51	164	04/29/23	61.0	67.8	60.8	72	0
04/30/23	77.2	64.7	106.4	49	165	04/30/23	67.8	61.0	104.1	89	0
05/01/23	78.2	65.2	107.6	76	166	05/01/23	69.8	57.7	104.6	37	0
05/02/23			107.2	62	167	05/02/23	71.7	75.1	105	87	0
05/03/23	77.1	73.9	106.2	49	168	05/03/23	73.9	72.3	104.7	48	0
05/04/23	79.4	69.6	106	58	169	05/04/23	73.0	81.1	104.1	61	0
05/05/23	78.1	78.0	106.3	73	170	05/05/23	80.1	76.3	103.6	74	42
05/06/23	83.6	73.1	106.3	82	171	05/06/23	77.1	76.6	104.1	68	2
05/07/23			106.1	47	172	05/07/23	76.8	77.5	103.5	90	0
05/08/23			106.1	54	173	05/08/23	75.0	83.7	103.4	44	0
05/09/23			106.6	167	174	05/09/23	71.1	87.2	104	151	38
05/10/23	80.4	74.6	106.2	103	175	05/10/23	71.2	89.2	103.9	176	136
05/11/23	80.4	77.0	105.3	79	176	05/11/23	78.0	83.1	103.5	74	0
05/12/23	78.8	79.2	105.4	54	177	05/12/23	80.0	80.4	103.2	59	0
05/13/23	75.6	84.9	105.9	78	178	05/13/23	71.8	87.9	102.8	156	127
05/14/23	77.1	83.5	105.4	89	179	05/14/23	72.6	85.6	102.1	291	153
05/15/23	81.8	79.9	105.5	87	180	05/15/23	73.8	86.4	101.6	200	101
05/16/23	83.0	77.6	105.9	73	181	05/16/23	73.3	83.2	102	89	0
05/17/23	77.2	83.7	105.3	63	182	05/17/23	74.7	74.2	101.4	67	0
05/18/23	77.0	83.4	105.2	63	183	05/18/23	77.0	69.4	102.1	58	0
05/19/23	78.8	80.5	104.8	64	184	05/19/23	79.5	69.8	101.6	61	0
05/20/23	78.4	78.8	105.5	69	185	05/20/23	74.7	76.4	101.2	69	14

Monthly Average Summary Table and % Discharge Reduction Comparisons:

		Aveag	ge Influent and D	Discharge By N	/lonths			Aveage Temp	and % RH	By Months	
		Greenhouse			Open		RAIN	Greenh	ouse	Ор	en
	Influent	Effluent	% Reduction	Influent	Effluent	% Reduction	GPD	Temp	%RH	Temp	%RH
Nov-22	101	68	33%	98	110	-11%	53	61.2	N/A	54.4	N/A
Dec-22	95	57	40%	94	76	19%	47	64.9	N/A	61.9	N/A
Jan-23	105	65	38%	103	102	1%	17	61.0	66.6	55.1	73.7
Feb-23	107	64	40%	106	104	1%	11	63.5	67.7	56.5	74.8
Mar-23	106	54	49%	105	79	25%	10	70.3	70.3	64.4	69.3
Apr-23	94	66	30%	92	148	-61%	82	72.1	74.2	66.0	74.0
May-23	106	62	41%	102	81	20%	22	79.6	74.9	75.1	75.6
Jun-23											
Jul-23											
Aug-23											
Sep-23											
Oct-23											
Nov-23											
Dec-23											

NOTE: GPD (Gallons per Day) RAIN is calculated based on the open wetland size and monthly average rainfall recorded at the site.

Appendix-C: Drip sites visited in Hood County.

The drip system has not been working properly since the start-up, effluent surfacing at several locations and the homeowner is not happy with the system. The owner is in the process of getting another contractor to work on repairs based on the suggestions developed during the visit.

New installation in progress, note the gravel material used by this installer to allow drip system work better than otherwise on sites with clay soil. This site will be revisited after 3 years to study system performance. On the right, filter used in this system.

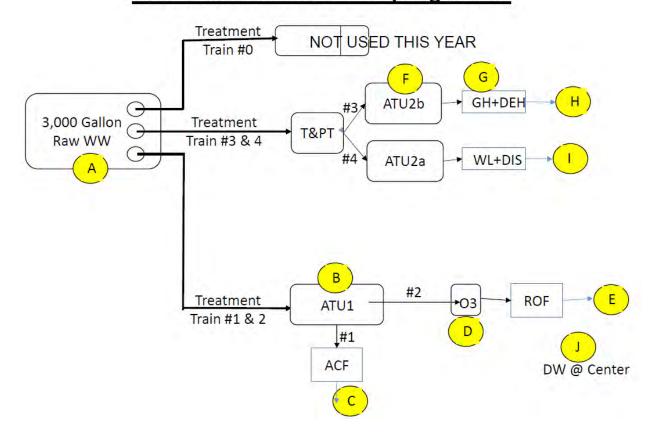
Screen filter typically used in drip system, to be cleaned during the routine maintenance service.

Appendix-D: Treatment trains to be studied during this year REEU program in June.

2023 REEU Research Program

• Research topics –

- Evaluate effectiveness of the following four Treatment Trains to meet Type I and II and III reuse water quality standards.
- Determine energy consumption for the four Treatment Trains.
- Conduct the Taste Test of the Water Quality and the Greenhouse Produce (voluntary basis only).


FOUR TREAMTENT TRAINS:

- 1. Raw WW ➡ ATU1➡ACF
- 2. Raw WW ➡ ATU1➡O3+ROF
- 3. Raw WW ➡ ATU2a➡WL+DIS
- 4. Raw WW ➡ ATU2b➡GH+DEH

ATU1: NSF 350 Unit ATU2a & b: NSF 40 Units ACF: Activated Carbon Filter O3: Ozonation Tank ROF: Reverse Osmosis Filter WL: Wetland Cell DIS: Distillation GH: Greenhouse covering WL DEH: Dehumidifier

WW: Raw Wastewater

Treatment Trains and Sampling Points

Quarterly Progress Report #8 Work Period: June 1, 2023 – August 31, 2023

For Texas On-Site Sewage Facility (OSSF) Research Contract #582- 22-31143

Reduction of wastewater effluent from on-site sewage facilities

Report submitted to: Donna Cosper, P.E., Project Manager Program Support and Texas OSSF Research Grant Program Texas Commission on Environmental Quality P.O. Box 13087, MC - 235 Austin, Texas 78711-3087 Donna.Cosper@tceq.texas.gov

Report Submitted by:

Anish Jantrania, Associate Professor & Extension Specialist Texas A&M AgriLife Extension & Research ajantrania@tamu.edu

September 15, 2023

The following tasks were completed during Year 2 Quarter 4:

- 32. Requested and received a three month extension from TCEQ to complete the project. The date of completion is November 30, 2023, instead of August 31, 2023. This extension was needed as the start date of this project was delayed by *more than three months* in 2021.
- 33. Continued inflow and outflow data collection (see **Appendix A** for the daily average values and monthly summary table of effluent flow reduction rates).
- 34. Included Reuse Water Quality Research and Extension Experiences for Undergraduates (REEU) 2023 program in project activities (see <u>https://reeu.baen.tamu.edu/</u>). REEU fellows studied effluent flow reduction needs/concepts and collected water-quality samples from four sampling points: ATU effluent, wetland effluent, greenhouse dehumidifier, and from the distillation unit used to "polish" the effluent from open wetland. See Appendix B for water-quality results and REEU photos.
- 35. Worked with the TCEQ and TOWA leadership to finalize a date for the 5th annual TOGP annual meeting to discuss details on this and upcoming research programs. The meeting date is set for **September 26** on RELLIS Campus. Invitation responses indicate that more than 2/3rd of the group plans to participate.

The following tasks will be addressed during extended Quarter 9:

- 1. Continue effluent quantity data collection and start the effluent quality monitoring program to add value to the data collected during the REEU-2023 program.
- 2. Engage <u>two graduate research assistants on an hourly wadge basis</u> to assists with effluent quality samples, deliver samples to the certified laboratory, and retain services from the laboratory for conducting sample analysis and reporting results during September and October. Complete the sampling and analysis by October end so that results can be included in the draft final report which is due on November 30th.
- 3. Organize the 5th annual TOGP advisory group meeting on September 26th and present the content of the draft final report for this project.
- 4. Complete the data collection by the end of October and prepare the draft final report for submission by November 30.
- 5. Work with the SRS team to ensure that all/most of the funds are drawn-down available for this project.

Appendix-A: Example of E-FLOW data recording spreadsheet, daily average values and monthly summary. Data from HOBO datalogger, processed, and stored in spreadsheet format – daily data example (Note: yellow high-lighted cells have missing or erroneous data):

			nhouse Wet					C)pen Wetlar	nd		RAIN
Obs #	Date	Avg Temp	Avg RH%	Influent GPD	Effluent GPD	Obs #	Date	Avg Temp	o Avg RH%	Influent GPD	Effluent GPD	GPD
246	07/20/23	90.8	63.0	102.2	0	246	07/20/23	89.0	58.9	100.4		0
247	07/21/23	89.6	63.5	102.5	53	247	07/21/23	87.9	57.8	100.7		0
248	07/22/23	90.5	61.6	102.8	29	248	07/22/23	89.8	54.8	100.2		0
249	07/23/23	90.6	62.0	103.1	27	249	07/23/23	89.1	53.7	100.8		0
250	07/24/23	89.5	63.1	104	41	250	07/24/23	87.3	59.1	100.3		0
251	07/25/23	90.0	62.5	103.1	24	251	07/25/23	87.8	59.4	100.9		0
252	07/26/23	90.0	62.4	103.6	30	252	07/26/23	88.1	57.3	101	37	0
253	07/27/23	89.8	62.6	117.9	38	253	07/27/23	87.6	58.3	115.1	65	0
254	07/28/23	88.6	62.2	103.4	52	254	07/28/23	86.6	56.9	101.6	78	0
255	07/29/23	89.1	62.7	104	29	255	07/29/23	87.1	57.5	101.8	80	0
256	07/30/23	89.9	62.6	121.1	23	256	07/30/23	88.4	55.2	119.7	69	0
257	07/31/23	91.3	61.6	103.6	62	257	07/31/23	90.3	52.7	102.8	75	0
258	08/01/23	91.7	60.9	103.7	29	258	08/01/23	90.6	51.5	102.3	74	0
259	08/02/23	91.6	57.6	103.5	18	259	08/02/23	90.4	49.3	101.4	68	0
260	08/03/23	91.4	61.3	102.9	25	260	08/03/23	89.5	57.1	101.3	58	0
261	08/04/23	92.2	59.9	103.3	30	261	08/04/23	84.2	71.3	101.6	64	0
262	08/05/23	92.2	59.9	103.7	29	262	08/05/23	90.6	56.0	101	60	0
263	08/06/23	92.1	59.2	103.4	26	263	08/06/23	90.7	55.5	101.5	57	0
264	08/07/23	92.6	59.3	102.9	26	264	08/07/23	91.2	55.7	101.7	69	0
265	08/08/23	92.3	60.1	102.5	23	265	08/08/23	90.3	57.9	101.1	70	0
266	08/09/23	92.3	60.9	33.9	24	266	08/09/23	90.7	58.5	33.6	76	0
267	08/10/23	93.0	59.5	102.8	24	267	08/10/23	91.5	56.6	100.9	56	0
268	08/11/23	92.8	59.4	101.8	25	268	08/11/23	91.4	56.4	100.3	64	0
269	08/12/23	92.5	61.5	101.3	33	269	08/12/23	90.9	59.8	100.7	76	0
270	08/13/23	92.2	60.1	72.2	24	270	08/13/23	90.6	57.6	71.5	72	0
271	08/14/23	91.6	61.5	102.1	25	271	08/14/23	90.5	56.3	100	39	0
272	08/15/23	89.4	51.8	101.7	21	272	08/15/23	89.4	39.8	100.6	68	0
273	08/16/23	85.8	54.3	102.2	25	273	08/16/23	85.7	37.5	100.4	67	0
274	08/17/23	88.8	58.5	101.7	35	274	08/17/23	88.5	48.9	100	68	0
275	08/18/23	91.1	55.8	101.9	38	275	08/18/23	90.3	48.2	100.3	100	0
276	08/19/23	91.1	58.9	101.5	33	276	08/19/23	90.1	52.5	100.9	58	0
277	08/20/23	93.1	54.6	102.5	35	277	08/20/23	93.5	45.2	100	51	0
278	08/21/23	91.9	53.7	102.3	27	278	08/21/23	92.3	43.2	101.9	56	0
279	08/22/23	91.3	61.4	102.3	34	279	08/22/23	90.3	54.3	103.1	77	0
280	08/23/23	90.4	61.6	101.7	36	280	08/23/23	89.5	53.9	100.9	74	0
281	08/24/23	92.6	56.4	102.7	34	281	08/24/23	92.7	46.6	101	77	0
282	08/25/23	93.4	53.5	101.5	42	282	08/25/23	92.9	44.7	101.6	27	0
283	08/26/23	91.2	57.8	101.8	33	283	08/26/23	90.6	49.3	101.3	10	0
205	00/20/23	00 E	20 E	101.0	20	203	00/20/23	00.1	=	101.5	10	

Monthly Average Summary Table and % Discharge Reduction Comparisons:

		Aveag	ge Influent and D	ischarge By I	Nonths			Aveage Temp	and % RH	By Months	
	Gi	reenhouse, E\	/ED	(Dpen, Non-EV	/ED	RAIN	Greenh	ouse	Ор	en
	Influent	Effluent	% Reduction	Influent	Effluent	% Reduction	GPD	Temp	%RH	Temp	%RH
Nov-22	101	68	33%	98	110	-11%	53	61.2	N/A	54.4	N/A
Dec-22	95	57	40%	94	76	19%	47	64.9	N/A	61.9	N/A
Jan-23	105	65	38%	103	102	1%	17	61.0	66.6	55.1	73.7
Feb-23	107	64	40%	106	104	1%	11	63.5	67.7	56.5	74.8
Mar-23	106	54	49%	105	79	25%	10	70.3	70.3	64.4	69.3
Apr-23	94	66	30%	92	148	-61%	82	72.1	74.2	66.0	74.0
May-23	106	62	41%	102	81	20%	22	79.6	74.9	75.1	75.6
Jun-23	103	50	52%	100	74	26%	19	86.4	69.8	83.4	70.9
Jul-23	90	26	72%	99	61	39%	3	89.6	66.0	87.4	62.1
Aug-23	99	30	70%	97	67	31%	0	90.9	58.7	89.7	52.1
Sep-23											
Oct-23											

NOTE: GPD (Gallons per Day) RAIN is calculated based on the open wetland size and monthly average rainfall recorded at the site.

Appendix-B: REEU-2023 Research program and inclusion of the E-Flow Treatment Trains # 3&4 Sampling Points.

3,000 Gallon	Treatment	F G ATU2b GH+DEH H
Raw WW	Train #3 & 4	#4 ATU2a WL+DIS I

	Tank - A	Tank - F	Tank - G	Tank - H	Tank - I	Tank - J
BOD	65	2	0	0	0	0
TSS	64	39	0	0	0	0
Ammonia-N	18	0.02	0	0.3	0.08	0.07
Nitrate/Nitritie-N	0.1	22	6	0.1	0.7	0.2
TKN	23	1	1.4	0.4	0.3	0.2
Total-N	23.1	23	7.4	0.5	1	0.4
Total-P	3.4	4.8	3.2	0.1	0.2	0.2
E. Coli (MPN/100ml)	2,455,219	3,242	11	0	1	0
Turbididty (n=10)	37	26	1.4	0.3	0.7	0.4
	Raw WW (n=10)	ATU (n=10)	EVED-Wetland (n=5)	Dehumidifier (n variable)	Non-EVEDDistllation (n variable)	DW (n variable
		E	G			

Number of Samples	Tank - A	Tank - F	Tank - G	Tank - H	Tank - I	Tank - J
BOD	10	10	5	2	2	1
TSS	10	10	5	2	2	1
Ammonia-N	10	10	5	5	5	2
Nitrate/Nitritie-N	10	10	5	5	5	2
TKN	10	10	5	5	5	2
E. Coli	10	10	5	2	2	1
TP	10	10	5	5	5	2
Turbidity	10	10	10	10	10	10

<u>REEU Fellows working on the E-Flow Project – water quality sample collection:</u>

Appendix-B Raw Data Sets and Lab Reports

		Greer	nhouse Wet						pen Wetlan	d		RAIN
bs #	Date	Avg Temp	Avg RH%	Influent GPD	Effluent GPD	Obs #	Date	Avg Temp	Avg RH%	Influent GPD	Effluent GPD	GPD
1	11/17/22	57.3	N/A	102.4	36	1	11/17/22	51.3	N/A	99.5	15	0
2	11/18/22	60.6	N/A	102.4	51	2	11/18/22	51.9	N/A	99.5	80	0
3	11/19/22	48.6	N/A	102.6	77	3	11/19/22	43.0	N/A	98.5	130	0
4	11/20/22	52.7	N/A	101.8	72	4	11/20/22	43.3	N/A	99.4	85	0
5	11/21/22	50.5	N/A	85.6	51	5	11/21/22	44.6	N/A	83.0	124	0
6	11/22/22	60.3	N/A	102.6	76	6	11/22/22	51.0	N/A	99.6	87	0
7	11/23/22	69.8	N/A	100.7	55	7	11/23/22	61.8	N/A	99.3	77	0
8	11/24/22	65.7	N/A	102.0	100	8	11/24/22	63.9	N/A	99.3	154	131
9	11/25/22	62.5	N/A	102.6	95	9	11/25/22	59.8		99.3	81	8
9 10		64.2		102.8	86	10			N/A			
	11/26/22		N/A				11/26/22	56.2	N/A	99.1	272	228
11	11/27/22	63.3	N/A	102.8	69	11	11/27/22	54.8	N/A	99.9	142	0
12	11/28/22	65.4	N/A	102.8	62	12	11/28/22	58.2	N/A	100.5	122	0
13	11/29/22	75.0	N/A	102.4	66	13	11/29/22	71.9	N/A	100.2	85	0
14	11/30/22	60.9	N/A	103.0	52	14	11/30/22	50.2	N/A	99.9	81	0
15	12/01/22	57.3	N/A	102.4	61	15	12/01/22	48.6	N/A	100.3	80	0
16	12/02/22	65.4	N/A	101.8	64	16	12/02/22	62.7	N/A	100.2	81	0
17	12/03/22	65.3	N/A	102.1	64	17	12/03/22	62.2	N/A	100.0	81	0
18	12/04/22	62.9	N/A	102.9	56	18	12/04/22	57.8	N/A	100.1	81	0
19	12/05/22	68.9	N/A	101.6	67	19	12/05/22	65.1	N/A	100.1	80	0
20	12/06/22	53.9	N/A	101.1	64	20	12/06/22	80.7	N/A	100.0	81	0
21	12/07/22	57.1	N/A	101.6	54	21	12/07/22	78.4	N/A	100.0	78	0
22	12/08/22	62.4	N/A	102.3	57	22	12/08/22	42.0	N/A	99.9	42	0
23	12/09/22	64.5	N/A	102.5	62	23	12/09/22	0.0	N/A	100.7	0	0
24	12/10/22	48.6	N/A	102.0	64	24	12/10/22	28.4	N/A	100.0	28	352
25	12/11/22	97.2	N/A	102.3	49	25	12/11/22	0.0	N/A	101.7	0	322
26	12/11/22	80.3	N/A	102.6	97	26	12/12/22	0.0	N/A	101.1	0	0
27	12/12/22	69.8	N/A	102.9	80	20	12/13/22	0.0	N/A	101.4	0	3
27	12/13/22	62.4	N/A	102.9	70	27	12/13/22	26.1	N/A	101.4	26	13
28 29		58.1		103.1	62	28	12/14/22				80	0
	12/15/22		N/A					79.5	N/A	101.3		
30	12/16/22	53.9	N/A	103.3	58	30	12/16/22	50.0	N/A	102.3	50	3
31	12/17/22	61.3	N/A	104.0	54	31	12/17/22		N/A	103.6	81	0
32	12/18/22		N/A	103.9	61	32	12/18/22		N/A	103.2	81	0
33	12/19/22		N/A	69.0	22	33	12/19/22		N/A	69.4	365	494
34	12/20/22	70.8	N/A	104.8	0	34	12/20/22		N/A	104.2	102	16
35	12/21/22	72.9	N/A	103.5	71	35	12/21/22	81.8	N/A	104.3	47	0
36	12/22/22	46.5	N/A	105.0	73	36	12/22/22	55.7	N/A	104.9	82	0
37	12/23/22		N/A	48.4	47	37	12/23/22	2.3	N/A	47.8	56	0
38	12/24/22		N/A	17.6	0	38	12/24/22	23.9	N/A	17.3	2	0
39	12/25/22	51.8	N/A	57.1	0	39	12/25/22	88.6	N/A	56.3	24	0
40	12/26/22	48.6	N/A		52	40	12/26/22	82.9	N/A		89	0
41	12/27/22	66.6	N/A		49	41	12/27/22	81.8	N/A		83	0
42	12/28/22	79.3	N/A		67	42	12/28/22	311.3	N/A		82	0
43	12/29/22	93.0	N/A	105.2	79	43	12/29/22	93.2	N/A	104.0	311	255
44	12/30/22	74.0	N/A	104.3	93	44	12/30/22	82.9	N/A	103.2	93	3
45	12/31/22	60.2	N/A	105.5	74	45	12/31/22	85.2	N/A	103.4	83	0
46	01/01/23	70.8	N/A	104.3	60	46	01/01/23	66.8	N/A	103.5	85	0
40	01/02/23	74.5	N/A	104.3	85	40	01/02/23	73.4	N/A	103.5	90	19
48	01/02/23	69.8	N/A	104.4	75	47	01/03/23	63.7	N/A	102.8	110	40
40 49	01/03/23			104.0		40				102.9	83	40
	01/04/23	63.1	N/A		55		01/04/23	56.1	N/A			
50		60.9	N/A	105.0	71	50		52.5	N/A	103.2	83	0
51	01/06/23	65.6	N/A	105.4	70	51	01/06/23	60.5	N/A	103.4	83	0
52	01/07/23	70.0	N/A	104.3	53	52	01/07/23	66.5	N/A	102.5	87	16
53	01/08/23	63.6	N/A	104.1	62	53	01/08/23	57.3	N/A	103.5	82	5
54	01/09/23	62.2	N/A	105.5	69	54	01/09/23	56,4	N/A	102.9	83	0
55	01/10/23	68.5	N/A	104.5	58	55	01/10/23	64.6	N/A	103.1	83	0
56	01/11/23	74.4	68.3	103.8	60	56	01/11/23	71.2	74.7	102.5	82	0
57	01/12/23	62.6	47.2		51	57	01/12/23	57.8	49.7		81	0
58	01/13/23	58.1	47.7	104.5	45	58	01/13/23	47.0	52.8	102.8	80	0
59	01/14/23	58.0	53.0	105.4	54	59	01/14/23	48.2	60.5	103.0	81	0
60	01/15/23	64.3	66.7	105.0	43	60	01/15/23	59.9	75.4	102.5	82	0

NOTE: Yellow highlighted cells indicate missing data due to malfunctioning of the data collection and/or recording system.

61	01/16/23	67.3	78.6	104.9	57	61	01/16/23	63.8	86.4	101.8	87	3
62	01/17/23	67.0	79.2	104.5	59	62	01/17/23	61.9	91.2	101.9	81	0
63	01/18/23	69.3	66.0	104.2	56	63	01/18/23	67.2	65.6	102.9	108	54
64	01/19/23	63.7	44.3	104.2	66	64	01/19/23	55.8	41.9	102.4	81	0
65		53.6		104.5	51	65					75	
	01/20/23		62.2				01/20/23	50.5	61.2	103.3		0
66	01/21/23	55.4	75.0	105.2	51	66	01/21/23	50.5	82.9	102.8	82	0
67	01/22/23	56.9	57.2	105.2	63	67	01/22/23	46.6	66.4	103.3	81	0
68	01/23/23	57.6	53.5	105.0	69	68	01/23/23	47.4	56,3	103.4	81	0
69	01/24/23	49.7	77.9	105.2	93	69	01/24/23	47.3	83.8	102.7	201	174
70	01/25/23	52.1	62.4	104.9	73	70	01/25/23	43.7	73.3	104.0	82	0
71	01/26/23	54.3	60.2	104.9	55	71	01/26/23	41.7	72.5	104.8	81	0
72	01/27/23	49.5	67.9	105.5	52	72	01/27/23	43.8	74.8	104.1	80	0
73	01/28/23	60.4	86.2	105.5	85	73	01/28/23	59.0	91.7	103.9	109	67
74	01/29/23	63.0	85.9	104.8	105	74	01/29/23	59.7	93.9	103.5	504	102
75	01/30/23	42.2	81.7	105.5	86	75	01/30/23	35.1	96.9	104.0	81	38
76	01/31/23	42.3	78.0	105.7	70	76	01/31/23	32.9	96.1	104.3	81	19
77	02/01/23	41.7	79.9	106.6	122	77	02/01/23	33.1	96.8	105.2	350	27
78	02/02/23	44.8	80.2	106.0	122	78	02/02/23	36.2	97.2	104.7	425	30
79	02/03/23	57.2	73.0	105.6	88	79	02/03/23	42.6	89.4	103.9	70	35
80	02/04/23	61.9	67.8	105.5	74	80	02/04/23	47.3	82,5	104.6	81	35
81	02/05/23	66.7	65.9	105.5	69	81	02/05/23	55.9	82.3	104.3	80	35
82	02/06/23	69.7	71.1	104.8	64	82	02/06/23	63.0	83.6	103.7	80	24
83	02/07/23	68.7	84.0	105.2	60	83	02/07/23	66.8	87.6	104.0	83	16
84	02/08/23	54.3	82.4	105.0	110	84	02/08/23	50.2	92.6	104.1	206	16
85	02/09/23	61.6	66.9	105.8	82	85	02/09/23	53.4	77.0	104.1	83	13
86	02/10/23	55.3	61.3	106.0	66	86	02/10/23	48.4	68.8	104.0	77	8
87	02/11/23	50.1	65.1	105.9	60	87	02/11/23	41.8	77.9	104.4	76	5
88	02/12/23	59.4	62.7	105.8	59	88	02/12/23	48.5	70.9	104.9	78	8
89	02/13/23	63.0	68.4	105.8	60	89	02/13/23	56,1	75.3	104.8	77	0
90	02/14/23	70.9	64.1	105.3	61	90	02/14/23	66.8	62.5	104.8	77	0
91	02/15/23	71.4	76.2	105.6	56	91	02/15/23	68.2	79.4	104.7	77	0
92	02/16/23	55.9	57.0	105.8	61	92	02/16/23	52.4	58.6	105.1	90	0
93	02/17/23	54.7	51.0	107.6	50	93	02/17/23	41.8	54.7	106.1	76	37
94	02/18/23	53.5	61.6	107.9	52	94	02/18/23	43.9	63.7	107.6	80	0
95	02/19/23	65.6	66.0	107.5	51	95	02/19/23	57.3	72.5	106.9	78	0
96	02/20/23	74.8	73.8	107.6	48	96	02/20/23	70.3	78.9	107.8	78	0
97	02/21/23	75.4	73.3	107.5	50	97	02/21/23	71.5	77.9	106.9	77	0
98	02/22/23	78.4	67.1	107.0	42	98	02/22/23	75.4	68.7	107.1	75	0
99	02/23/23	75.5	64.8	107.6	51	99	02/23/23	70.9	67.0	107.5	75	0
100	02/24/23	63.5	57.6	107.6	48	100	02/24/23	58.5	61.8	107.5	75	5
101	02/25/23	66.2	63.2	108.0	43	101	02/25/23	57.7	73.1	108	74	0
102	02/26/23	72.4	70.4	108.3	44	102	02/26/23	68.1	75.1	107.8	74	0
103	02/27/23	73.7	50.5	108.6	47	103	02/27/23	69.1	46.1	106.9	72	0
104	02/28/23	70.9	69.4	108.3	47	104	02/28/23	66.4	71.8	107.9	73	0
105	03/01/23	77.1	76.4	100.5	52	104	03/01/23	74.4	78.3	106.3	133	0
106	03/02/23	75.0	82.5	107.7	73	106	03/02/23	72.4	85.3	106.5	103	103
107	03/03/23	66.4	58.0	107.9	95	107	03/03/23	57.5	61.7	107.9	73	26
108	03/04/23	68.3	62.4	107.0	41	108	03/04/23	60.6	65.1	107	72	0
109	03/05/23	71.3	65.1	108.0	48	109	03/05/23	64.1	70.8	106.8	72	0
L10	03/06/23	73.6	75.1	106.2	47	110	03/06/23	68.3	78.7	107.3	73	0
111	03/07/23	76.7	81.1	106.5	41	111	03/07/23	72.8	82.1	107.1	72	0
112	03/08/23	78.4	73.5	105.9	50	112	03/08/23	73.5	75.0	106.2	64	0
113	03/09/23	77.4	73.0	105.3	59	113	03/09/23	72.6	74.6	105.3	62	0
114	03/10/23	70.9	73.0	105.8	42	114	03/10/23	62.7	81.2	106.4	73	0
115	03/10/23	76.4	73.0	105.8	48	114	03/11/23	71.9	75.6	105.9	70	0
	03/11/23											
16		70.0	72.6	106.0	49	116	03/12/23	65.2	75.9	104.9	74	0
117	03/13/23	67.9	64.6	4	54	117	03/13/23	57.7	55.7		72	0
18	03/14/23	65.8	64.3	106.0	41	118	03/14/23	56.8	52.0	105.2	72	0
19	03/15/23	69.2	60.4	106.4	47	119	03/15/23	60,1	58.2	105.3	186	0
20	03/16/23	68.0	84.8	106.7	66	120	03/16/23	66.3	84.6	104.9	87	167
121	03/17/23	57.0	61.0	107.0	73	121	03/17/23	48.8	59.9	105.3	74	19
122	03/18/23	55.4	61.9	106.3	52	122	03/18/23	49.4	52.0	104.7	76	0
123	03/19/23	61.2	60.6	106.2	48	123	03/19/23	46.2	51.1	104.9	95	0
L23	03/20/23	52.8	68.5	100.2	53	123	03/20/23	40.2		104.9		
									62.9		81	0
125	03/21/23	65.0	83.5	107.2	56	125	03/21/23	62.4	84.7	104.8	23	7
126	03/22/23	76.8	78.6	106.2	60	126	03/22/23	72.9	79.5	105	23	0
127	03/23/23	79.4	74.8	105.3	34	127	03/23/23	75.7	76.1	104.4		0
128	03/24/23	77.6	71.8	105.1	71	128	03/24/23	73.2	70.6	103.6		0
	03/25/23	69.5	62.1	105.8	48	129	03/25/23	63.2	56.1	103.8	-	0
129											-	

131	03/27/23	73.0	73.8	106.0	45	131	03/27/23	66.9	70.5	104.2		0
132	03/28/23	71.9	51.8	106.3	49	132	03/28/23	64.4	46.6	104		0
133	03/29/23	69.7	59.6	106.0	60	133	03/29/23	62.1	56.0	103.5		0
134	03/30/23	72.1	76.9	106.5	69	134	03/30/23	69.2	77.2	103.7		0
135	03/31/23	80.1	72.8	106.6	56	135	03/31/23	76.7	72.7	103		0
36	04/01/23	73.6	65.2	106.0	49	135	04/01/23	67.6	62.8	103.8	-	0
										103.8		5
137	04/02/23	74.3	74.6	107.3	58	137	04/02/23	70.8	70.4			
138	04/03/23	80.1	76.6	106.8	43	138	04/03/23	76.9	77.4	103.5	4	0
139	04/04/23	80.2	76.8	106.7	48	139	04/04/23	77.3	77.4	103.2		0
L40	04/05/23	71.6	72.2	107.0	54	140	04/05/23	67.5	68.7	104.2	64	52
141	04/06/23	56.0	89.4	107.4	99	141	04/06/23	53.3	90.1	103.9	617	845
142	04/07/23	56.8	90.7	107.5		142	04/07/23	52.6	91.9	103.7	128	373
143	04/08/23	64.7	85.7	108.1	-	143	04/08/23	58.2	88.0	104.9	87	0
144	04/09/23	71.3	83.7	107.4		144	04/09/23	64.1	82.1	104.7	67	0
145	04/10/23	71.5	82.1	106.3		145	04/10/23	63.6	80.1	105.3	61	0
146	04/11/23	71.2	76.1	107.1		146	04/11/23	63.2	73.0	104.4	69	0
147	04/12/23	70.9	72.5	106.4		147	04/12/23	63.5	72.5	104.5	62	0
148	04/13/23	73.4	69.7	106.5		148	04/13/23	65.5	70.3	103.9	61	0
149	04/14/23	72.2	82.0	106.0		149	04/14/23	68.0	84.1	103.3	61	0
150	04/15/23	79.1	68.3	106.3		150	04/15/23	75.2	67.3	104.7	58	0
151	04/16/23	72.9	57.0	105.8		151	04/16/23	62.7	49.1	104.9	55	0
152	04/17/23	71.4	62.2	106.1	77	152	04/17/23	63.4	57.5	105	55	0
152		73.4	70.9	100.1	52	152	04/17/23	68.5	70.0	104.9	57	5
	04/18/23											
154	04/19/23	77.2	73.6	107.2	53	154	04/19/23	72.6	75.5	104.9	60	0
155	04/20/23	75.5	84.0	13.7	86	155	04/20/23	71.9	85.8	13.3	515	427
156	04/21/23	74.4	77.0	58.1	87	156	04/21/23	68.2	80.5	56.8	124	5
157	04/22/23	73.6	64.3	35.6	53	157	04/22/23	67.3	60.5	32.2	55	0
158	04/23/23	68.5	67.6	0.0	0	158	04/23/23	59.2	71.1	0	0	0
159	04/24/23	70.6	68.8	0.0	27	159	04/24/23	60.3	70.2	0	60	0
160	04/25/23	72.8	74.9	17.6	104	160	04/25/23	66.7	74.1	17.3	69	0
										103.7		
161	04/26/23	77.0	77.7	106.6	97	161	04/26/23	72.0	81.8		181	419
62	04/27/23	74.2	74.8	106.5	105	162	04/27/23	66.4	77.6	102.7	708	174
163	04/28/23	69.9	76.4	106.5	69	163	04/28/23	65.2	80.8	103.4	270	164
164	04/29/23	67.4	65.3	62.4	51	164	04/29/23	61.0	67.8	60.8	72	0
165	04/30/23	77.2	64.7	106.4	49	165	04/30/23	67.8	61.0	104.1	89	0
166	05/01/23	78.2	65.2	107.6	76	166	05/01/23	69.8	57.7	104.6	37	0
167	05/02/23			107.2	62	167	05/02/23	71.7	75.1	105	87	0
168	05/03/23	77.1	73.9	106.2	49	168	05/03/23	73.9	72.3	104.7	48	0
169	05/04/23	79.4	69.6	106	58	169	05/04/23	73.0	81.1	104.1	61	0
170	05/05/23	78.1	78.0	106.3	73	170	05/05/23	80.1	76.3	103.6	74	42
171	05/06/23	83.6	73.1	106.3	82	171	05/06/23	77.1	76.6	104.1	68	2
172	05/07/23			106.1	47	172	05/07/23	76.8	77.5	103.5	90	0
173	05/08/23			106.1	54	173	05/08/23	75.0	83.7	103.4	44	0
174	05/09/23			106.6	167	174	05/09/23	71.1	87.2	104	151	38
175	05/10/23	80.4	74.6	106.2	103	175	05/10/23	71.2	89.2	103.9	176	136
176	05/11/23	80.4	77.0	105.3	79	176	05/11/23	78.0	83.1	103.5	74	0
177	05/12/23	78.8	79.2	105.4	54	177	05/12/23	80.0	80.4	103.2	59	0
178	05/13/23	75.6	84.9	105.9	78	178	05/13/23	71.8	87.9	102.8	156	127
179	05/14/23	77.1	83.5	105.4	89	179	05/14/23	72.6	85.6	102.1	291	153
180	05/15/23	81.8	79.9	105.5	87	180	05/15/23	73,8	86.4	101.6	200	101
81	05/16/23	83.0	77.6	105.9	73	181	05/16/23	73.3	83.2	102	89	0
.82	05/17/23	77.2	83.7	105.3	63	182	05/17/23	74.7	74.2	101.4	67	0
.83	05/18/23	77.0	83.4	105.2	63	183	05/18/23	77.0	69.4	102.1	58	0
84	05/19/23	78.8	80.5	104.8	64	184	05/19/23	79.5	69.8	101.6	61	0
.85	05/20/23	78.4	78.8	105.5	69	185	05/20/23	74.7	76.4	101.2	69	14
		79.5										0
.86	05/21/23		72.2	106.1	57	186	05/21/23	70.9	79.1	100.8	69	
.87	05/22/23	81.4	69.9	104.9	44	187	05/22/23	74.1	69.3	100.5	67	0
.88	05/23/23	83.6	67.2	104	53	188	05/23/23	75.8	74.2	100.7	65	0
.89	05/24/23	80.2	71.2	104.9	67	189	05/24/23	75,4	73.0	100.7	87	42
90	05/25/23	78.5	74.2	104.4	54	190	05/25/23	76.2	69.5	100.1	65	0
91	05/26/23	79.9	66.4	104.3	55	191	05/26/23	77.9	60.6	100.2	61	0
92	05/27/23	80.2	73.7	103.8	62	192	05/27/23	76.8	64.4	100.1	61	0
.93	05/28/23	80.2	73.5	103.8	45	193	05/28/23	77.4	66.1	99.2	60	0
193 194												
	05/29/23	80.7	70.5	105.3	36	194	05/29/23	76.6	69.2	100	56	0
195	05/30/23	81.0	64.7	104.8	48	195	05/30/23	77.4	69.8	99.7	55	0
196	05/31/23	81.0	66.6	103.9	49	196	05/31/23	78.5	67.5	99.3	51	0
97	06/01/23	81.5	65.7	104.6	53	197	06/01/23	79.5	67.4	100.1	56	0
198	06/02/23	81.3	68.3	102.1	47	198	06/02/23	80.1	65.5	99.6	57	0
199	06/03/23	81.8	67.0	103.1	33	199	06/03/23	80.6	63.5	100.5	184	206
200	06/04/23	82.7	65.0	103.7	55	200	06/04/23	74.8	72.4	100.2	90	2
		02.1	0.0	103.7		200	00/04/23	14.0	12.4	100.2	50	

01	06/05/23	81.0	70.9	103.9	54	201	06/05/23	75.0	78.0	100.5	62	0
02	06/06/23	82.0	67.2	103.2	60	202	06/06/23	77.5	70.8	100.7	59	0
03	06/07/23	82.5	67.0	102.9	56	203	06/07/23	79.0	68.7	100.2	66	0
							and the second se					
04	06/08/23	79.9	74.0	102.74	49	204	06/08/23	74.8	80.4	100.2	191	16
05	06/09/23	84.4	72.0	102.8	49	205	06/09/23	80.5	73.1	100.1	72	0
06	06/10/23	86.2	71.5	102.3	57	206	06/10/23	82.2	73.3	99.9	234	20
07	06/11/23	84.9	72.8	103.7	73	207	06/11/23	81.0	73.2	100.5	77	0
08	06/12/23	86.6	73.3	102.7	47	208	06/12/23	83.4	74.3	100.5	60	0
9	06/13/23	86.5	72.3	102.6	35	209	06/13/23	83.6	73.3	100.2	53	0
10	06/14/23	87.1	74.5	103.2	45	210	06/14/23	84.5	74.6	99.7	56	0
11	06/15/23	89.0	71.3	102.4	53	211	06/15/23	86.4	74.5	99.7	59	0
12	06/16/23	89.5	70.2	102.5	31	212	06/16/23	87.6	71.9	99.6	59	0
13	06/17/23	88.7	71.6	102.5		213	06/17/23	86.0	75.2	99.6	59	0
14	06/18/23	89.8	68.2	102.5		214	06/18/23	87.6	70.2	99.8	52	C
15	06/19/23	90.0	68.6	102.8		215	06/19/23	87.7	71.3	99.8	56	0
												0
16	06/20/23	90.3	68.4	102.5		216	06/20/23	87.9	70.9	99.6	56	
17	06/21/23	88.3	72.4	102.3		217	06/21/23	85.4	72.9	99.4	56	0
8	06/22/23	86.1	74.2	102.9		218	06/22/23	83.7	72.0	99.7	69	(
19	06/23/23	89.2	71.2	102.2		219	06/23/23	87.2	70.3	99.2	60	(
20	06/24/23	87.6	70.9	101.7		220	06/24/23	86.0	69.3	99.1	60	0
1	06/25/23	89.2	70.2	101.3		221	06/25/23	87.6	69.2	97.9	59	0
2	06/26/23	88.4	69.0	101.1		222	06/26/23	86.2	68.8	98.5	59	0
3	06/27/23	89.4	66.7	101.1		223	06/27/23	87.3	65.4	99	57	0
4	06/28/23	88.8	68.0	101.5		224	06/28/23	86.6	66.0	99.6	52	
5	06/29/23	89.5	67.5	100.2		225	06/29/23	87.2	66.2	100.2	45	(
6	06/30/23	88.6	65.5	100.9		226	06/30/23	86.2	63.5	99.5	50	0
7	07/01/23	88.1	69.4	101.8		227	07/01/23	86.1	65.7	99.1	53	(
8	07/02/23	87.7	68.5	101.6		228	07/02/23	86.0	63.3	99.6	52	(
9	07/03/23	87.4	71.9	101.1		229	07/03/23	84.8	67.2	100.3	51	(
0	07/04/23	87.1	74.3	100.7		230	07/04/23	84.5	71.8	99.2	60	(
1	07/05/23	86.8	73.6	101.3		231	07/05/23	84.2	71.4	100.2	55	(
2	07/06/23	84.9	78.2	101.7		232	07/06/23	80.2	80.4	100.3	89	5
3	07/07/23	85.7	72.2	102.1		233	07/07/23	82.1	73.3	100.1	68	(
4	07/08/23	88.2	71.1	101.3		234	07/08/23	85.7	70.5	100.8	65	0
5	07/09/23	89.9	67.7	101		235	07/09/23	88.0	65.2	100.6	62	(
6	07/10/23	90.3	67.9	101.8		236	07/10/23	88.3	65.1	101.1	61	0
7	07/11/23	89.9	67.3	102.2		237	07/11/23	88.5	64.7	100.9	62	(
18	07/12/23	90.8	65.1	102.1	24	238	07/12/23	89.4	63.0	100.8	67	0
9	07/13/23	91.4	64.6	102.6	19	239	07/13/23	89.6	62.7	100.5	67	0
0	07/14/23	90.7	64.5	103.3	23	240	07/14/23	88.8	62.5	100	52	(
1	07/15/23	97.1	68.3	21.4	3	241	07/15/23	89.5	60.2	21.2	10	(
2	07/16/23	89.4	66.1	47.1	0	242	07/16/23	88.3	61.1	100.2	68	(
3	07/17/23	90.7	62.4	42.2	0	243	07/17/23	88.5	58.2	101.3	47	(
4	07/18/23	91.1	62.3	81.4	6	244	07/18/23	89.2	58.5	100.2		0
5		91.0	61.9	33.6		245	07/19/23	88.8		99.9		
	07/19/23				26				58.8			
6	07/20/23	90.8	63.0	102.2	0	246	07/20/23	89.0	58.9	100.4		C
7	07/21/23	89.6	63.5	102.5	53	247	07/21/23	87.9	57.8	100.7		0
8	07/22/23	90.5	61.6	102.8	29	248	07/22/23	89.8	54.8	100.2		(
9	07/23/23	90.6	62.0	103.1	27	249	07/23/23	89.1	53.7	100.8		(
0	07/24/23	89.5	63.1	104	41	250	07/24/23	87.3	59.1	100.3		(
1	07/25/23	90.0	62.5	103.1	24	251	07/25/23	87.8	59.4	100.9		0
2	07/26/23	90.0	62.4	103.6	30	252	07/26/23	88.1	57.3	101	37	0
3	07/27/23	89.8	62.6	117.9	38	253	07/27/23	87.6	58.3	115.1	65	(
4	07/28/23	88.6	62.2	103.4	52	254	07/28/23	86.6	56.9	101.6	78	(
5	07/29/23	89.1	62.7	104	29	255	07/29/23	87.1	57.5	101.8	80	(
6	07/30/23	89.9	62.6	121.1	23	256	07/30/23	88.4	55.2	119.7	69	(
7	07/31/23	91.3	61.6	103.6	62	257	07/31/23	90.3	52.7	102.8	75	(
8	08/01/23		60.9									Ì
		91.7		103.7	29	258	08/01/23	90.6	51.5	102.3	74	
9	08/02/23	91.6	57.6	103.5	18	259	08/02/23	90.4	49.3	101.4	68	(
0	08/03/23	91.4	61.3	102.9	25	260	08/03/23	89.5	57.1	101.3	58	(
1	08/04/23	92.2	59.9	103.3	30	261	08/04/23	84.2	71.3	101.6	64	0
2	08/05/23	92.2	59.9	103.7	29	262	08/05/23	90.6	56.0	101	60	(
3	08/06/23	92.1	59.2	103.4	26	263	08/06/23	90.7	55.5	101.5	57	(
4	08/07/23	92.6	59.3	102.9	26	264	08/07/23	91.2	55.7	101.7	69	
5	08/08/23	92.3	60.1	102.5	23	265	08/08/23	90.3	57.9	101.1	70	(
6	08/09/23	92.3	60.9	33.9	24	266	08/09/23	90.7	58.5	33.6	76	(
7	08/10/23	93.0	59.5	102.8	24	267	08/10/23	91.5	56.6	100.9	56	(
8	08/11/23	92.8	59.4	101.8	25	268	08/11/23	91.4	56.4	100.3	64	(
9	08/12/23	92.5	61.5	101.3	33	269	08/12/23	90.9	59.8	100.7	76	(
0	08/13/23	92.2	60.1	72.2	24	270	08/13/23	90.6	57.6	71.5	72	(
1	08/14/23	91.6	61.5	102.1	25	271	08/14/23	90.5	56.3	100	39	(
2	08/15/23	89.4	51.8	101.7	21	272	08/15/23	89.4	39.8	100.6	68	0
3	08/16/23	85.8	54.3	102.2	25	273	08/16/23	85.7	37.5	100.4	67	(
4	08/17/23	88.8	58.5	101.7	35	274	08/17/23	88.5	48.9	100	68	(
5	08/18/23	91.1	55.8	101.9	38	275	08/18/23	90.3	48.2	100.3	100	(
6	08/19/23	91.1	58.9	101.5	33	276	08/19/23	90.1	52.5	100.9	58	(
7	08/20/23	93.1	54.6	102.5	35	277	08/20/23	93.5	45.2	100	51	(
	08/21/23	91.9	53.7	102.3	27	278	08/21/23	92.3	43.2	101.9	56	0
8		01.2	61 4	102.2	24	270	00/22/22	00.2			77	0
	08/22/23	91.3	61.4	102.3	34	279	08/22/23	90.3	54.3	103.1	77	

281	08/24/23	92.6	56.4	102.7	34	281	08/24/23	92.7	46.6	101	77	0
282	08/25/23	93.4	53.5	101.5	42	282	08/25/23	92.9	44.7	101.6	27	0
283	08/26/23	91.2	57.8	101.8	33	283	08/26/23	90.6	49.3	101.3	10	0
84	08/27/23	89.5	60.5	102.2	34	284	08/27/23	89.1	53.9	101.6	0	0
85	08/28/23	86.7	66.9	102.4	33	285	08/28/23	84.8	64.1	93.4	135	0
86	08/29/23	87.6	59.4	102.5	45	286	08/29/23	87.0	49.5	101.3	133	0
87	08/30/23	85.9	55.8	102.1	35	287	08/30/23	85.7	42.3	101.5	70	0
							and a second					
88	08/31/23	86.4	57.6	101.9	35	288	08/31/23	86.3	42.3	101.4	66	0
89	09/01/23	86.1	57.9	102.8	41	289	09/01/23	86.0	43.4	101	81	0
90	09/02/23	86.9	58.1	101.8	36	290	09/02/23	86.7	42.3	100.9	62	0
91	09/03/23	89.2	59.4	102.1	34	291	09/03/23	87.9	51.8	101.3	62	0
92	09/04/23	89.8	62.4	101.5	34	292	09/04/23	88.5	59.5	101.8	68	0
93	09/05/23	92.0	60.1	101.7	53	293	09/05/23	90.6	57.6	101.1	67	0
94	09/06/23	91.5	60.3	100.4	35	294	09/06/23	89.7	58.1	100.9	61	0
95	09/07/23	92.5	57.3	100.7	35	295	09/07/23	91.3	52.6	100	80	0
96	09/08/23	92.4	54.3	100.1	27	296	09/08/23	91.8	47.4	100.6	48	0
97	09/09/23	88.9	59.5	100.9	37	297	09/09/23	88.0	51.0	99.8	57	0
98	09/10/23	86.6	53.8	101.1	31	298	09/10/23	86.0	40.1	99.4	57	0
99	09/11/23	81.7	58.3	100.9	39	299	09/11/23	81.1	43.9	100.5	70	0
00	09/12/23	85.9	59.1	101.6	34	300	09/12/23	85.1	49.1	101.8	69	0
01	09/13/23	82.4	70.4	33.6	48	301	09/13/23	78.6	72.0	33.4	65	9
02	09/14/23	83.5	71.7	101	63	302	09/14/23	78.6	80.2	100.3	83	40
03	09/15/23	83.7	71.6	101	77	303	09/15/23	78.1	79.9	100.6	294	33
04	09/16/23	82.4	72.1	101.8	74	304	09/16/23	77.3	80.9	101.6	1	0
05	09/17/23	83.4	64.3	102.1	62	305	09/17/23	80.6	65.5	101.8	14	0
06	09/18/23	82.6	58.8	101.7	47	306	09/18/23	80.5	51.7	43.0	149	0
07	09/19/23	84.0	58.9	102.0	40	307	09/19/23	81.4	53.9	50.5	48	0
08	09/20/23	85.6	61.7	101.9	47	308	09/20/23	83.1	59.5	102.6	59	0
99	09/21/23	87.2	62.9	101.2	53	309	09/21/23	85.0	62.8	100.4	76	0
LO	09/22/23	88.0	63.0	101.0	53	310	09/22/23	85.5	64.0	100.4	68	0
11	09/23/23	89.4	62.6	101.1	53	311	09/23/23	86.9	65.0	100.8	75	0
12	09/24/23	90.3	63.0	100.9	52	312	09/24/23	87.7	65.1	100.4	74	0
13	09/25/23	86.0	68.9	102.1	89	313	09/25/23	82.5	71.4	100.3	59	0
14	09/26/23	84.8	66.2	101.9	52	314	09/26/23	80.7	71.7	100.8	145	0
15	09/27/23	86.1	64.8	102.6	32	315	09/27/23	82.8	67.3	101.1	90	13
6	09/28/23	85.4	63.7	101.3	70	316	09/28/23	82.4	64.0	101.5	65	0
17		85.5	63.0	102.5	45	317		82.5	62.9	101.0	78	0
	09/29/23						09/29/23					
18	09/30/23	84.8	60.7	102.9	56	318	09/30/23	82.3	57.1	101.0	74	0
9	10/01/23	82.8	61.6	102.5	53	319	10/01/23	80.9	54.1	101.8	73	0
20	10/02/23	82.8	60.9	103	53	320	10/02/23	80.8	52.5	103	73	0
21	10/03/23	81.8	69.9	103	72	321	10/03/23	77.0	75.9	102	41	0
22	10/04/23	86.9	69.9	102	39	322	10/04/23	83.0	76.2	101	78	2
23	10/05/23	79.0	74.2	102	82	323	10/05/23	73.8	82.6	100	58	42
												C
24	10/06/23	79.9	64.0	102	69	324	10/06/23	75.7	66.1	102	374	
25	10/07/23	73.5	58.9	103	61	325	10/07/23	67.8	50.7	101	68	0
26	10/08/23	71.2	63.6	103	58	326	10/08/23	64.8	52.0	101	76	0
27	10/09/23	75.1	62.2	103	38	327	10/09/23	69.3	57.7	101	76	0
28	10/10/23	73.4	75.0	103	0	328	10/10/23	68.9	78.4	101	66	5
29	10/11/23	73.9	72.0	102	2	329	10/11/23	67.9	79.9	101	102	2
30	10/12/23	75.3	73.3	102	24	330	10/12/23	70.1	78.8	100	81	0
31	10/13/23	78.9	65.4	103	45	331	10/13/23	74.9	68.8	101	91	0
32	10/14/23	69.2	60.0	103	48	332	10/14/23	64.2	50.2	101	62	C
33	10/15/23	67.1	60.3	105	50	333	10/15/23	60.5	55.4	102	81	0
34				104	7						68	0
	10/16/23	65.6	61.2			334	10/16/23	57.2	56.8	101		
35	10/17/23	66.2	63.9	103	17	335	10/17/23	57.7	58.5	101	76	C
36	10/18/23	71.5	63.4	104	10	336	10/18/23	66.0	63.4	100	70	C
37	10/19/23	74.2	64.1	104	25	337	10/19/23	69.3	67.0	101	77	C
38	10/20/23	74.6	58.3	105	25	338	10/20/23	71.8	53.8	101	64	0
39	10/21/23	75.1	63.6	104	26	339	10/21/23	72.4	56.9	101	66	C
0	10/22/23	80.1	66.7	105	44	340	10/22/23	76.5	70.8	101	66	C
1	10/23/23	80.7	69.6	105	52	341	10/23/23	78.0	71.2	100	86	C
12	10/24/23	80.8	68.8	105	64	342	10/24/23	78.4	70.1	101	68	C
13	10/25/23	80.9	74.5	105	58	343	10/25/23	77.2	79.9	101	92	5
	10/26/23	79.0	76.0	105	60	344	10/26/23	75.3	87.0	101	149	11
4		82.2	74.5	105	85	345	10/27/23	77.2	88.5	101	86	1
14 15	10/27/23		71.5	105	80	346	10/28/23	79.1	81.6	101	89	3
4	10/27/23 10/28/23	83.2			77		10/29/23	62.1	87.6	101	107	5
14 15 16	10/28/23			106		4/1 /		54.1			107	2
14 15 16 17	10/28/23 10/29/23	67.4	74.3	106		347		11-				-
14 15 16 17 18	10/28/23 10/29/23 10/30/23	67.4 47.7	74.3 76.0	107	66	348	10/30/23	44.7	80.8	101	125	
14 15 16 17 18	10/28/23 10/29/23	67.4	74.3					44.7 49.3				
4 5 6 7 8 9	10/28/23 10/29/23 10/30/23 10/31/23	67.4 47.7 58.2	74.3 76.0 61.7	107 107	66 57	348 349	10/30/23 10/31/23	49.3	80.8 57.2	101 102	125 78	C
4 5 7 8 9	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23	67.4 47.7 58.2 58.2	74.3 76.0 61.7 67.6	107 107 107	66 57 30	348 349 350	10/30/23 10/31/23 11/01/23	49.3 46.03	80.8 57.2 63.06	101 102 103	125 78 72	C C
4 5 6 7 8 9 0	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23	67.4 47.7 58.2 58.2 59.2	74.3 76.0 61.7 67.6 69.2	107 107 107 107	66 57 30 36	348 349 350 351	10/30/23 10/31/23 11/01/23 11/02/23	49.3 46.03 49.59	80.8 57.2 63.06 62.83	101 102 103 102	125 78 72 94	
4 5 6 7 8 9 0	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23	67.4 47.7 58.2 58.2	74.3 76.0 61.7 67.6	107 107 107	66 57 30	348 349 350	10/30/23 10/31/23 11/01/23	49.3 46.03	80.8 57.2 63.06	101 102 103	125 78 72	
4 5 6 7 8 9 0 1 2	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23 11/03/23	67.4 47.7 58.2 58.2 59.2 66.1	74.3 76.0 61.7 67.6 69.2 68.7	107 107 107 107 107	66 57 30 36 30	348 349 350 351 352	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23	49.3 46.03 49.59 60.03	80.8 57.2 63.06 62.83 66.61	101 102 103 102 103	125 78 72 94 32	
4 5 6 7 8 9 0 1 2 3	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23	67.4 47.7 58.2 58.2 59.2 66.1 71.2	74.3 76.0 61.7 67.6 69.2 68.7 70.0	107 107 107 107 107 107 107	66 57 30 36 30 36	348 349 350 351 352 353	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23	49.3 46.03 49.59 60.03 65.15	80.8 57.2 63.06 62.83 66.61 77.68	101 102 103 102 103 103	125 78 72 94 32 106	
4 5 6 7 8 9 0 1 2 3 4	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23	67.4 47.7 58.2 58.2 59.2 66.1 71.2 73.8	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6	107 107 107 107 107 107 107 106	66 57 30 36 30 36 35	348 349 350 351 352 353 354	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23	49.3 46.03 49.59 60.03 65.15 68.26	80.8 57.2 63.06 62.83 66.61 77.68 79.22	101 102 103 102 103 103 103	125 78 72 94 32 106 23	
4 5 6 7 8 9 0 1 2 3 4	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23	67.4 47.7 58.2 58.2 59.2 66.1 71.2	74.3 76.0 61.7 67.6 69.2 68.7 70.0	107 107 107 107 107 107 107	66 57 30 36 30 36	348 349 350 351 352 353	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23	49.3 46.03 49.59 60.03 65.15	80.8 57.2 63.06 62.83 66.61 77.68	101 102 103 102 103 103	125 78 72 94 32 106	
14 15 16 17 18 19 50 51 52 53 54 55	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23	67.4 47.7 58.2 58.2 59.2 66.1 71.2 73.8 75.7	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4	107 107 107 107 107 107 107 106	66 57 30 36 30 36 35 42	348 349 350 351 352 353 354	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29	101 102 103 102 103 103 103	125 78 72 94 32 106 23 22	
14 15 16 17 18 19 10 51 52 53 54 55 56	10/28/23 10/29/23 10/30/23 10/31/23 11/02/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/06/23	67.4 47.7 58.2 59.2 66.1 71.2 73.8 75.7 78.0	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4 67.6	107 107 107 107 107 107 106 106 108	66 57 30 36 30 36 35 42 42	348 349 350 351 352 353 354 355 356	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/07/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05 74.01	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29 73.73	101 102 103 102 103 103 102 102 102 106	125 78 72 94 32 106 23 22 102	
14 15 16 17 18 19 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/07/23 11/08/23	67.4 47.7 58.2 59.2 66.1 71.2 73.8 75.7 78.0 78.6	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4 67.6 70.3	107 107 107 107 107 106 106 108 108	66 57 30 36 30 36 35 42 42 42 41	348 349 350 351 352 353 354 355 356 356 357	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/07/23 11/08/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05 74.01 74.83	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29 73.73 76.53	101 102 103 102 103 103 103 102 102 106 102	125 78 72 94 32 106 23 22 102 162	
14 15 16 17 18 19 50 51 52 53 54 55 56 57	10/28/23 10/29/23 10/30/23 10/31/23 11/02/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/06/23	67.4 47.7 58.2 59.2 66.1 71.2 73.8 75.7 78.0	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4 67.6	107 107 107 107 107 107 106 106 108	66 57 30 36 30 36 35 42 42	348 349 350 351 352 353 354 355 356	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/07/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05 74.01	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29 73.73	101 102 103 102 103 103 102 102 102 106	125 78 72 94 32 106 23 22 102	
14 15 16 17 18 19 50 51 52 53 54 55 56 57 58	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/07/23 11/08/23	67.4 47.7 58.2 59.2 66.1 71.2 73.8 75.7 78.0 78.6	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4 67.6 70.3	107 107 107 107 107 106 106 108 108	66 57 30 36 30 36 35 42 42 42 41	348 349 350 351 352 353 354 355 356 356 357	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/07/23 11/08/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05 74.01 74.83	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29 73.73 76.53	101 102 103 102 103 103 103 102 102 106 102	125 78 72 94 32 106 23 22 102 162	
14 15 16 17 18 19 50 51 52 53 54 55 56 57 58 59	10/28/23 10/39/23 10/30/23 11/01/23 11/01/23 11/02/23 11/03/23 11/04/23 11/06/23 11/06/23 11/06/23 11/08/23 11/09/23 11/09/23	67.4 47.7 58.2 59.2 66.1 71.2 73.8 75.7 78.0 78.6 72.2 59.2	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4 67.6 70.3 82.7 85.6	107 107 107 107 107 107 106 106 106 108 106 107 107	66 57 30 36 30 35 42 42 42 41 53 68	348 349 350 351 352 353 354 355 356 357 358 359	10/30/23 10/31/23 11/01/23 11/02/23 11/02/23 11/04/23 11/05/23 11/06/23 11/06/23 11/07/23 11/08/23 11/09/23 11/10/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05 74.01 74.83 68.67 56.15	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29 73.73 76.53 86.34 90.54	101 102 103 102 103 103 102 102 102 106 102 102 102	125 78 72 94 32 106 23 22 102 162 67 67 125	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 15 16 17 18 19 50 51 52 53 54 55 56 57 58 59 50	10/28/23 10/29/23 10/30/23 11/01/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/07/23 11/08/23 11/09/23 11/09/23 11/10/23 11/10/23	67.4 47.7 58.2 59.2 66.1 71.2 73.8 75.7 78.0 78.6 72.2 59.2 60.4	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4 67.6 70.3 82.7 85.6 85.0	107 107 107 107 107 107 106 106 108 106 107 107 107	66 57 30 36 30 36 35 42 42 42 41 53 68 68 60	348 349 350 351 352 353 354 355 356 357 358 359 360	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/06/23 11/08/23 11/08/23 11/09/23 11/10/23 11/10/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05 74.01 74.83 68.67 56.15 56.43	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29 73.73 76.53 86.34 90.54 87.94	101 102 103 103 103 103 102 102 102 106 102 102 102 102 102	125 78 72 94 106 23 22 102 162 67 125 94	
14 15 16 17 18 19 50 51 52 53 54 55 56 57 58 59 50 51	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/06/23 11/07/23 11/09/23 11/09/23 11/10/23 11/12/23	67.4 47.7 58.2 59.2 66.1 71.2 73.8 75.7 78.0 78.0 72.2 59.2 60.4 62.4	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4 67.6 71.4 67.6 70.3 82.7 85.6 85.0 83.7	107 107 107 107 107 107 106 106 108 106 107 107 107 107	66 57 30 36 30 36 35 42 42 42 41 53 68 60 66	348 349 350 351 352 353 354 355 355 355 355 357 358 359 360 361	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/07/23 11/08/23 11/09/23 11/09/23 11/10/23 11/10/23 11/11/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05 74.01 74.83 68.67 56.15 56.43 59.38	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29 73.73 76.53 86.34 90.54 87.94 82.65	101 102 103 103 103 103 102 102 102 102 102 102 102 102 102 102	125 78 72 94 32 106 23 22 102 162 67 125 94 78	65 00 00 00 00 00 00 00 00 00 00 00 00 00
44 445 446 447 48 49 50 51 52 53 54 55 55 55 55 55 55 55 55 55 55 55 55	10/28/23 10/29/23 10/30/23 11/01/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/07/23 11/08/23 11/09/23 11/09/23 11/10/23 11/10/23	67.4 47.7 58.2 59.2 66.1 71.2 73.8 75.7 78.0 78.6 72.2 59.2 60.4	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4 67.6 70.3 82.7 85.6 85.0	107 107 107 107 107 107 106 106 108 106 107 107 107	66 57 30 36 30 36 35 42 42 42 41 53 68 68 60	348 349 350 351 352 353 354 355 356 357 358 359 360	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/06/23 11/08/23 11/08/23 11/09/23 11/10/23 11/10/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05 74.01 74.83 68.67 56.15 56.43	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29 73.73 76.53 86.34 90.54 87.94	101 102 103 103 103 103 102 102 102 106 102 102 102 102 102	125 78 72 94 106 23 22 102 162 67 125 94	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 15 16 17 18 19 50 51 52 53 54 55 56 57 58 59 50 51 52	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/06/23 11/08/23 11/09/23 11/10/23 11/11/23 11/11/23	67.4 47.7 58.2 59.2 66.1 71.2 73.8 75.7 78.0 78.6 72.2 59.2 60.4 62.4 64.1	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4 67.6 70.3 82.7 85.6 85.0 83.7 82.7	107 107 107 107 107 106 106 108 106 107 107 107 107 106 107	66 57 30 36 30 35 42 42 41 53 68 60 66 67	348 349 350 351 352 353 354 355 356 357 358 359 360 360 361 362	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/05/23 11/06/23 11/06/23 11/07/23 11/08/23 11/09/23 11/10/23 11/11/23 11/11/23 11/11/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05 74.01 74.83 68.67 56.15 56.43 59.38 59.85	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29 73.73 76.53 86.34 90.54 87.94 82.65 81.48	101 102 103 102 103 103 102 102 102 102 102 102 102 102 103 103	125 78 72 94 32 106 23 22 102 162 67 125 94 78 108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 45 46 47 48 49 50 51 52 53 55 55 55 55 55 55 55 55 55 55 55 55	10/28/23 10/29/23 10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/06/23 11/07/23 11/09/23 11/09/23 11/10/23 11/12/23	67.4 47.7 58.2 59.2 66.1 71.2 73.8 75.7 78.0 78.0 72.2 59.2 60.4 62.4	74.3 76.0 61.7 67.6 69.2 68.7 70.0 70.6 71.4 67.6 71.4 67.6 70.3 82.7 85.6 85.0 83.7	107 107 107 107 107 107 106 106 108 106 107 107 107 107	66 57 30 36 30 36 35 42 42 42 41 53 68 60 66	348 349 350 351 352 353 354 355 355 355 355 357 358 359 360 361	10/30/23 10/31/23 11/01/23 11/02/23 11/03/23 11/04/23 11/05/23 11/06/23 11/07/23 11/08/23 11/09/23 11/09/23 11/10/23 11/10/23 11/11/23	49.3 46.03 49.59 60.03 65.15 68.26 71.05 74.01 74.83 68.67 56.15 56.43 59.38	80.8 57.2 63.06 62.83 66.61 77.68 79.22 76.29 73.73 76.53 86.34 90.54 87.94 82.65	101 102 103 103 103 103 102 102 102 102 102 102 102 102 102 102	125 78 72 94 32 106 23 22 102 162 67 125 94 78	

Aqua-Tech Lab Reports Result Pages Only.

635 Phil Gramm Boulevard	Ar	ALLA	TECU	3512 M	ontopolis Dr.		-			Alle	lytical Repo
Bryan, TX 77807 Phone: (979) 778-3707			TECH	Ph	Austin, T. one: (512) 3				TAMU - Departm	ent of Biologi	cal and Ag. Er
Fax: (979) 778-3193	LAI	BORAT	ORIES		ax: (512) 3				Report Printed	i: s	9/27/23 16: G0311
TAMU - Ag. EngE-Flow / S1 (G	H-I)		2/23 13:25 by CLIENT 12/23 14:40 by Hannah Cl	ine		Type Grab		Matrix Non P		C-O-C # G031136	
Lab ID# G031136-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	09/13/23 07:10 CTG	SM5210 B 2016	M1668	530 NEL
Total Suspended Solids	10	mg/L		1	3	3	Bryan	09/13/23 16:39 DLC	SM2540 D 2015	M1666	506 Mei.
Total Kjeldahl Nitrogen as N	0.28	mg/L		0.13	0.13	0.20	Bryan	09/19/23 14:18 KMA	EPA 351.2 R2.0	M 1666	547 NEL
Nitrate/Nitrite as N	15	mg/L		0.02	0.17	0.20	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M1669	19 ANR
Turbidity	9.4	NTU		0.2	0.2	0.4	Bryan	09/13/23 13:38 ATG	SM2130 B 2011	M1668	592 NEL
Microbiological Analyses											
Fecal Coliform	10	CFU/100 mL	A-01, M5	1	10	10	Bryan	09/12/23 16:45 HDH	SM9222 D 2015	M 1664	179 MEL
E. Coli	73.8	MPN/100 mL	A-01	1.0	1.0	1.0	Bryan	09/12/23 15:59 HDH	SM9223 B 2004	M1664	178 MEL
Results run by SM 9223B are reported a	s MPN (Most Pro	bable Number). MPN	is comparable to CFU (Ce	olony Forn	ning Units). E	oth MPN	and CFU a	re allowed in most permits			
Metals (Total)											
Phosphorus-Total	3.80	mg/L	MS-01	0.082	0.041	0.050	Bryan	09/15/23 11:21 ABM	EPA 200.7 R4.4	M1666	519 MEL
G031136-01 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	09/21/23 11:10 KMA	SM4500-NH3 G 2011	M1669	967 MSL
TAMU - Ag. EngE-Flow / S2 (O	P-I)		12/23 13:30 by CLIENT 12/23 14:40 by Hannah Cl	ine		Type Grab		Matrix Non P		C-O-C # G031136	
Lab ID# G031136-02	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	~2	mg/L		1	2	2	Bryan	09/13/23 07:10 CTG	SM5210 B 2016	M1665	530 NEL
Total Suspended Solids	24	mg/L		1	7	7	Bryan	09/14/23 10:38 DLC	SM2540 D 2015	M1666	546 MEL
Total Kjeldahl Nitrogen as N	1.58	mg/L		0.13	0.13	0.20	Bryan	09/19/23 14:18 KMA	EPA 351.2 R2.0	M1666	547 NEL
Nitrate/Nitrite as N	14	mg/L		0.02	0.17	0.20	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M1669	19 ANR
Turbidity	14	NTU		0.2	0.2	0.4	Bryan	09/13/23 13:38 ATG	SM2130 B 2011	M1665	592 NEL
Microbiological Analyses											
Fecal Coliform	40	CFU/100 mL		1	10	10	Bryan	09/12/23 16:45 HDH	SM9222 D 2015	M 1664	179 NEL
E. Coli	9.7	MPN/100 mL		1.0	1.0	1.0	Bryan	09/12/23 15:59 HDH	SM9223 B 2004	M 1664	178 MEL
Results run by SM 9223B are reported a	s MPN (Most Pro	bable Number). MPN	is comparable to CFU (Ce	olony Form	ning Units). E	oth MPN	and CFU a	re allowed in most permits			
Metals (Total)											
Phosphorus-Total	3.95	mg/L	MS-01	0.082	0.041	0.050	Bryan	09/15/23 11:24 ABM	EPA 200.7 R4.4	M1666	19 NEL

Form: C:\ELMNT\FORMAT\ATL 051923 FIN_LS.RPT

Page 2 of 13 G031136_1 ATL 051923 FIN_Is 09 27 23 1643

BRYAN FACILITY 635 Phil Gramm Boulevard Bryan, TX 77807	AG	UA	-TECH		AUSTIN F/ Iontopolis Dr. Austin, T.	Suite A X 78744			TAMU - Departm	ment of B	Analytica iological and	
Phone: (979) 778-3707 Fax: (979) 778-3193			TORIES		ione: (512) 3 Fax: (512) 3				Report Printe	ed:	9/27/23	16:43 G031136
G031136-02 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	
General Chemistry												
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	09/21/23 11:10 KMA	SM4500-NH3 G 20	11	M166967	NEL
TAMU - Ag. EngE-Flow / S3 (DH)			9/12/23 14:10 by CLIENT 9/12/23 14:40 by Hannah Ci	ine		Type Grab		Matri Non	ix Potable	C-O-C # G031136		
Lab ID# G031136-03	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	

General Chemistry											
BOD (5 day)	2	mg/L		1	1	1	Bryan	09/13/23 07:10 CTG	SM5210 B 2016	M166530	NEL
Total Suspended Solids	2	mg/L		1	1	1	Bryan	09/14/23 13:29 SDH	SM2540 D 2015	M166680	NEL
Ammonia as N	1.20	mg/L		0.05	0.05	0.05	Bryan	09/18/23 12:05 KMA	SM4500-NH3 G 2011	M 166796	NEI.
Total Kjeldahl Nitrogen as N	1.71	mg/L		0.13	0.13	0.20	Bryan	09/19/23 14:18 KMA	EPA 351.2 R2.0	M166647	NEL
Nitrate/Nitrite as N	0.28	mg/L		0.02	0.02	0.02	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M166919	ANR
Turbidity	0.9	NTU		0.2	0.2	0.4	Bryan	09/13/23 13:38 ATG	SM2130 B 2011	M166592	NEI.
licrobiological Analyses											
Fecal Coliform	<1	CFU/100 mL		1	1	1	Bryan	09/12/23 17:07 HDH	SM9222 D 2015	M166479	HEI.
E. Coli	<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/12/23 15:59 HDH	SM9223 B 2004	M166478	NEL
Results run by SM 9223B are report	ed as MPN (Most Pro	bable Number). MPN	is comparable to C	FU (Colony Form	ning Units).	Both MPN	and CFU a	re allowed in most permits	5.		
Metals (Total)											
Phosphorus-Total	0.073	mg/L	MS-01	0.082	0.041	0.050	Bryan	09/15/23 11:27 ABM	EPA 200.7 R4.4	M166619	NEL.

Page 3 of 13 G031136_1 ATL 051923 FIN_Is 09 27 23 1643

BRYAN FACILITY 635 Phil Gramm Boulevard		ALLA	TECH	3512 M	AUSTIN F	Suite A	-		1000 - 200 - 200		Analytica	
Bryan, TX 77807 Phone: (979) 778-3707			TECH	Pho	Austin, T. one: (512) 3				TAMU - Departme	ent of Bio	ological and	Ag. Eng
Fax: (979) 778-3193	LAI	BORAT	ORIES		ax: (512) 3				Report Printed	:	9/27/23	16:4 G03113
TAMU - Ag. EngE-Flow / S4	(GH-E)		12/23 13:51 by CLIENT 12/23 14:40 by Hannah Clin	e		Type Grab		Matri Non		C-O-C # 3031136		
Lab ID# G031136-04	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Baton	
General Chemistry												
BOD (5 day)	2	mg/L		1	2	2	Bryan	09/13/23 07:10 CTG	SM5210 B 2016		M166530	NEL
Total Suspended Solids	<1	mg/L	·	1	1	1	Bryan	09/14/23 10:38 DLC	SM2540 D 2015		M166646	NEL.
Nitrate/Nitrite as N	4.0	mg/L		0.02	0.17	0.20	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011		M166919	ANR
Turbidity	1.5	NTU		0.2	0.2	0.4	Bryan	09/13/23 13:38 ATG	SM2130 B 2011		M166592	NEL
Microbiological Analyses												
Fecal Coliform	800	CFU/100 mL	M5	1	100	100	Bryan	09/12/23 17:07 HDH	SM9222 D 2015		M166479	NEL
E. Coli	<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/12/23 15:59 HDH	SM9223 B 2004		M166478	NEL.
Results run by SM 9223B are reported	ed as MPN (Most Pro	bable Number). MPN	is comparable to CFU (Col	ony Form	ing Units). E	oth MPN	and CFU a	re allowed in most permit	s.			
Metals (Total)												
Phosphorus-Total	5.19	mg/L	MS-01	0.082	0.041	0.050	Bryan	09/15/23 11:30 ABM	EPA 200.7 R4.4		M166619	NEI.
G031136-04 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	
General Chemistry												
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	09/21/23 11:10 KMA	SM4500-NH3 G 2011		M166967	NEL.
Total Kjeldahl Nitrogen as N	1.93	mg/L	1	0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	+++++++++++++++++++++++++++++++++++++++	M1669D3	NG.
TAMU - Ag. EngE-Flow / \$5	(OP-E)		12/23 13:40 by CLIENT			Type Grab		Matri		C-O-C # 3031136		
Lab ID# G031136-05	Result	Units	12/23 14:40 by Hannah Clin Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	
General Chemistry	Requit	Unite	NULES	MUL	valuer	(Sher	Lau	Analyzeu	Method		batuat	
BOD (5 day)	2	mg/L		1	2	2	Bryan	09/13/23 07:10 CTG	SM5210 B 2016		M 166531	NG.
Total Suspended Solids	1	mg/L	101-10100001010100	1	an francis	1	Bryan	09/14/23 13:29 SDH	SM2540 D 2015		M166680	NEL
Nitrate/Nitrite as N	11	mg/L		0.02	0.17	0.20	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011		M166919	ANR
Turbidity	4.6	NTU		0.2	0.2	0.4	Bryan	09/13/23 13:38 ATG	SM2130 B 2011		M 166592	NEL.
Microbiological Analyses												
Fecal Coliform	<1000	CFU/100 mL	M5	1	1000	1000	Bryan	09/12/23 17:19 HDH	SM9222 D 2015		M166479	NEL.
E. Coli	<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/12/23 15:59 HDH	SM9223 B 2004		M166478	NEL
Results run by SM 9223B are reported	ed as MPN (Most Pro	bable Number). MPN	is comparable to CFU (Cold	ony Form	ing Units). E	oth MPN	and CFU a	re allowed in most permit	s.			
Metals (Total)												
Phosphorus-Total	5.52	mg/L		0.082	0.041	0.050	Bryan	09/15/23 12:11 ABM	EPA 200.7 R4.4		M166620	WEL.

Page 4 of 13 G031136_1 ATL 051923 FIN_Is 09 27 23 1643

635 Phil G Bryan, TX	BRYAN FACILITY 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (070) 778-3707	A	QUA	-TECH	AUSTIN FACILITY 3512 Montopolis Dr. Suite A Austin, TX 78744 Phone: (512) 301-9659		-		TAMU - Department o	Analytica of Biological and	<u> </u>	
Phone: (97 Fax: (979)			-	TORIES		ione: (512) 3 Fax: (512) 3				Report Printed:	9/27/23	16:43 G031136
G031136-0	05 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Che	emistry											
Ammonia a	as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	09/21/23 11:10 KMA	SM4500-NH3 G 2011	M166967	NEL
Total Kjeld	ahl Nitrogen as N	1.92	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M166903	NEL
				E	cplanati	on of Not	es					
A-01	Fecal Coliform/E. Coli rat	io is outside expec	ted parameters. R	eview concluded it may be d	ue to samp	le matrix and	container	differences	5.			
BOD-07	Optional second BOD/CB	OD GG was outsid	le expected range	Results accepted on one re	equired pas	ssing GG.						
M5	This result is estimated as	s no plates contain	ed colony counts	within the method-specified n	ange.							
MS-01	The MS and/or MSD reco recovery.	overy was outside a	occeptance limits.	Investigation concludes it is	a sample-	specific matri	x effect an	nd the batch	was accepted based o	n acceptable LCS and /or LCS	D	

SL-01 The dried residue did not yield between 2.5 and 200 mg as specified in the method. Due to holding time constraints or insufficient sample volume, the sample cannot be reanalyzed.

Form: C:\ELMINT\FORMAT\ATL 051923 FIN_LS.RPT

Page 5 of 13 G031136_1 ATL 051923 FIN_Is 09 27 23 1643

635 Phil Gramm Boulevard Bryan, TX 77807	Δ	3ΠΔ.	TECH	3512 M	Austin, T		_			Analytica	C.C.T. C.T.
Phone: (979) 778-3707 Fax: (979) 778-3193		XUA	ORIES		one: (512) 3 ax: (512) 3	01-9559			TAMU - Department Report Printed:	of Biological and 9/27/23	d Ag. Eng 16:4
Fax. (919) 116-5195		BORAI	ORIES		ax. (512) 5	01-9002			Report Finited.	SILTILS	G03113
TAMU - Ag. EngE-Flow / S1			13/23 11:20 by CLIENT 13/23 12:21 by Hannah Clir	e		Type Grab		Matrix Non Po		-C # 1137	
Lab ID# G031137-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	<2	mg/L		1	2	2	Bryan	09/14/23 07:53 VML	SM5210 B 2016	M166614	NEL
Total Suspended Solids	13	mg/L		1	2	2	Bryan	09/14/23 13:29 SDH	SM2540 D 2015	M166680	NEL
Total Kjeldahl Nitrogen as N	1.08	mg/L		0.13	0.13	0.20	Bryan	09/19/23 14:18 KMA	EPA 351.2 R2.0	M166647	NEL
Nitrate/Nitrite as N	14	mg/L		0.02	0.17	0.20	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M166919	ANR
Turbidity	7.1	NTU		0.2	0.2	0.4	Bryan	09/13/23 13:38 ATG	SM2130 B 2011	M166592	NEL
Microbiological Analyses											
Fecal Coliform	290	CFU/100 mL		1	10	10	Bryan	09/13/23 17:12 HDH	SM9222 D 2015	M166537	NEL
E. Coli	276	MPN/100 mL		1.0	1.0	1.0	Bryan	09/13/23 14:49 HDH	SM9223 B 2004	M166536	NEL
Results run by SM 9223B are reported as	MPN (Most Pro	bable Number). MPN	is comparable to CFU (Col	ony Form	ing Units). E	oth MPN	and CFU ar	e allowed in most permits.			
Metals (Total)											_
Phosphorus-Total	3.75	mg/L		0.082	0.041	0.050	Bryan	09/15/23 12:16 ABM	EPA 200.7 R4.4	M166620	NEL
										ATTOOLD	
G031137-01 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	09/21/23 11:10 KMA	SM4500-NH3 G 2011	M166968	NEL
TAMU - Ag. EngE-Flow / S2		Collected: 09/	13/23 11:33 by CLIENT			Туре		Matrix	C-C	-C #	
			13/23 12:21 by Hannah Clir	e		Grab		Non Po	otable G03	1137	
Lab ID# G031137-02	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	<2	mg/L		1	2	2	Bryan	09/14/23 07:53 VML	SM5210 B 2016	M166614	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	09/14/23 13:29 SDH	SM2540 D 2015	M166680	NEL
Nitrate/Nitrite as N	4.0	mg/L		0.02	0.10	0.12	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M166919	ANR
Turbidity	1.6	NTU		0.2	0.2	0.4	Bryan	09/13/23 13:38 ATG	SM2130 B 2011	M166592	NEL
Microbiological Analyses											
Fecal Coliform	<100	CFU/100 mL		1	100	100	Bryan	09/13/23 17:12 HDH	SM9222 D 2015	M166537	NEL
E. Coli	<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/13/23 14:49 HDH	SM9223 B 2004	M166536	NEL
Results run by SM 9223B are reported as	MPN (Most Pro	bable Number). MPN	is comparable to CFU (Col	ony Form	ing Units). B	oth MPN	and CFU a	e allowed in most permits.			
Metals (Total)											

Page 2 of 12 G031137_1 ATL 051923 FIN_Is 09 27 23 1643

BRYAN FACILITY			TRALL	3512 M	AUSTIN F		-			Analytica	I Repor
Bryan, TX 77807	A	AUS	-TECH		Austin, T	78744			TAMU - Departmen	nt of Biological and	Ag. Eng
Phone: (979) 778-3707 Fax: (979) 778-3193			TORIES		ione: (512) 3 Fax: (512) 3				Report Printed:	9/27/23	16:43 G03113
G031137-02 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	09/21/23 11:10 KMA	SM4500-NH3 G 2011	M166968	NEL
Total Kjeldahl Nitrogen as N	1.77	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M 166903	NEL
TAMU - Ag. EngE-Flow / \$3			/13/23 11:35 by CLIENT /13/23 12:21 by Hannah C	ine		Type Grab		Matri Non		0-C # 031137	
Lab ID# G031137-03	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	2	mg/L		1	1	1	Bryan	09/14/23 07:53 VML	SM5210 B 2016	M166614	NEL
Total Suspended Solids	2	mg/L		1	1	1	Bryan	09/14/23 13:29 SDH	SM2540 D 2015	M166680	NEI.
Ammonia as N	1.20	mg/L		0.05	0.05	0.05	Bryan	09/18/23 12:05 KMA	SM4500-NH3 G 2011	M166796	NEL
Total Kjeldahl Nitrogen as N	1.70	mg/L		0.13	0.13	0.20	Bryan	09/19/23 14:18 KMA	EPA 351.2 R2.0	M166647	NEL
Nitrate/Nitrite as N	0.29	mg/L		0.02	0.02	0.02	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M166919	ANR
Turbidity	0.9	NTU		0.2	0.2	0.4	Bryan	09/13/23 13:38 ATG	SM2130 B 2011	M166592	NEI.
Microbiological Analyses											
Fecal Coliform	<1	CFU/100 mL		1	1	1	Bryan	09/13/23 17:36 HDH	SM9222 D 2015	M166537	NEL
E. Coli	<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/13/23 14:49 HDH	SM9223 B 2004	M166536	NEL
Results run by SM 9223B are reported	as MPN (Most Pro	bable Number). MF	N is comparable to CFU (C	olony Form	ning Units). E	oth MPN	and CFU a	re allowed in most permit	ts.		
Metals (Total)											
Phosphorus-Total	0.069	mg/L		0.082	0.041	0.050	Bryan	09/15/23 12:23 ABM	EPA 200.7 R4.4	M166620	NEL

Page 3 of 12 G031137_1 ATL 051923 FIN_Is 09 27 23 1643

635 Phil Gramm Boulevard Bryan, TX 77807			TECH	3512 M	Austin, T		-			1. C. 11. C. 1.	lytical Repo
Phone: (979) 778-3707	A	XUA-	TEGH	Ph	Austin, 1. one: (512) 3				TAMU - Departm		
Fax: (979) 778-3193	LAE	BORAT	ORIES	F	ax: (512) 3	01-9552			Report Printed	1: 9	27/23 16:- G0311:
TAMU - Ag. EngE-Flow / S4			13/23 11:27 by CLIENT 13/23 12:21 by Hannah Clir	ne		Type Grab		Matri Non		C-O-C # G031137	
Lab ID# G031137-04	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Baton	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	09/14/23 07:53 VML	SM5210 B 2016	M16661	A NEL
Total Suspended Solids	21	mg/L		1	7	7	Bryan	09/14/23 13:29 SDH	SM2540 D 2015	M16668	30 <u>we</u> .
Nitrate/Nitrite as N	14	mg/L		0.02	0.17	0.20	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M 16691	19 ANR
Turbidity	14	NTU		0.2	0.2	0.4	Bryan	09/13/23 13:38 ATG	SM2130 B 2011	M16659	2 NEL
Microbiological Analyses											
Fecal Coliform	10	CFU/100 mL	M5	1	10	10	Bryan	09/13/23 17:36 HDH	SM9222 D 2015	M 16653	37 NEL
E. Coli	45.9	MPN/100 mL		1.0	1.0	1.0	Bryan	09/13/23 14:49 HDH	SM9223 B 2004	M 16653	36 MEL
Results run by SM 9223B are reported as	MPN (Most Pro	bable Number). MPN	is comparable to CFU (Col	lony Form	ing Units). E	oth MPN	and CFU a	re allowed in most permi	ts.		
Netals (Total)											
Phosphorus-Total	3.94	mg/L		0.082	0.041	0.050	Bryan	09/15/23 12:26 ABM	EPA 200.7 R4.4	M16663	20 WEL
G031137-04 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	09/21/23 11:10 KMA	SM4500-NH3 G 2011	M 16696	57 MPL
Total Kjeldahl Nitrogen as N	1.56	mg/L		0.13	0.13	0.20	Bryan	09/25/23 12:30 KMA	EPA 351.2 R2.0	M16690	
	*******						(************	
TAMU - Ag. EngE-Flow / \$5			13/23 11:43 by CLIENT 13/23 12:21 by Hannah Clir	ne		Type Grab		Matn Non		C-O-C # G031137	
Lab ID# G031137-05	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	09/14/23 07:53 VML	SM5210 B 2016	M16661	14. MEL.
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	09/14/23 13:29 SDH	SM2540 D 2015	M16668	SO NEL
Nitrate/Nitrite as N	10	mg/L		0.02	0.17	0.20	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M16691	IS ANR
Turbidity	4.6	NTU		0.2	0.2	0.4	Bryan	09/13/23 13:38 ATG	SM2130 B 2011	M 16659	92 NEL
Nicrobiological Analyses											
Fecal Coliform	<1000	CFU/100 mL	M5	1	1000	1000	Bryan	09/13/23 17:36 HDH	SM9222 D 2015	M 16653	37 MEL.
E. Coli	<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/13/23 14:49 HDH	SM9223 B 2004	M 16653	36 NEL
Results run by SM 9223B are reported as	MPN (Most Pro	bable Number). MPN	is comparable to CFU (Co	lony Form	ing Units). E	oth MPN	and CFU a	re allowed in most permi	ts.		
Metals (Total)											
Phosphorus-Total	5.25	mg/L		0.082	0.041	0.050	Bryan	09/15/23 12:29 ABM	EPA 200.7 R4.4	M16663	20 Mei

Page 4 of 12 G031137_1 ATL 051923 FIN_Is 09 27 23 1643

BRYAN FACILITY 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707	A	AUS	-TECH		AUSTIN F lontopolis Dr. Austin, T.	Suite A X 78744	-		TAMU - Department o	Analytica f Biological and	
Fax: (979) 778-3193	LAE	BORA	TORIES		Fax: (512) 3	01-9552			Report Printed:	9/27/23	16:43 G031137
G031137-05 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	09/21/23 11:10 KMA	SM4500-NH3 G 2011	M166967	NEL
Total Kjeldahl Nitrogen as N	1.90	mg/L		0,13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M 1669D3	NEL
			Ex	planatio	on of Not	es					

Page 5 of 12 G031137_1 ATL 051923 FIN_Is 09 27 23 1643

BRYAN FACILITY 635 Phil Gramm Boulevard Bryan, TX 77807		AUC	-TECH	3512 M	AUSTIN Frontopolis Dr. Austin, T.	Suite A	-		TAMU - Departn	nent of B	Analytica	
Phone: (979) 778-3707 Fax: (979) 778-3193			TORIES		one: (512) 3 Fax: (512) 3				Report Printe		9/27/23	16:43
TAMU - Ag. EngE-Flow / S1 ((GH-I)		9/19/23 13:10 by CLIENT 9/19/23 14:27 by Hannah Clir	ie		Type Grab		<i>Matrix</i> Non P		C-O-C # G031138		G031138
Lab ID# G031138-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	
General Chemistry												
BOD (5 day)	2	mg/L		1	2	2	Bryan	09/20/23 07:22 CTG	SM5210 B 2016		M166888	NEL
Total Suspended Solids	10	mg/L		1	3	3	Bryan	09/21/23 14:27 SDH	SM2540 D 2015		M167016	NEL.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	09/25/23 11:45 KMA	SM4500-NH3 G 201	11	M167131	NEL
Total Kjeldahl Nitrogen as N	1.82	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0		M166903	NEL
Nitrate/Nitrite as N	14	mg/L		0.02	0.17	0.20	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 201	11	M166920	ANR
Turbidity	19	NTU		0.2	0.2	0.4	Bryan	09/20/23 11:39 ATG	SM2130 B 2011		M166930	NEL.
Nicrobiological Analyses												
Fecal Coliform	30	CFU/100 mL		1	2	2	Bryan	09/19/23 16:23 HDH	SM9222 D 2015		M166851	NEL.
E. Coli	21.3	MPN/100 mL		1.0	1.0	1.0	Bryan	09/19/23 15:42 HDH	SM9223 B 2004		M166850	NEL
Results run by SM 9223B are reported	as MPN (Most Pro	bable Number). M	PN is comparable to CFU (Col	ony Form	ning Units). E	oth MPN	and CFU ar	re allowed in most permits	5.			
Metals (Total)												
Phosphorus-Total	3.78	mg/L		0.082	0.041	0.050	Bryan	09/26/23 12:54 ABM	EPA 200.7 R4.4		M167006	NEL
TAMU - Ag. EngE-Flow / S2 ((GH-E)		9/19/23 13:55 by CLIENT 9/19/23 14:27 by Hannah Clir			Type Grab		Matrix Non F		C-O-C # G031138		

		Received: 09/	19/23 14:27 by Hannah (Cline		Grab		Non F	otable G031	138	
Lab ID# G031138-02	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	09/20/23 07:22 CTG	SM5210 B 2016	M166888	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	09/21/23 14:27 SDH	SM2540 D 2015	M167016	NEL
Ammonia as N	0.07	mg/L		0.05	0.05	0.05	Bryan	09/25/23 11:45 KMA	SM4500-NH3 G 2011	M167131	NEL.
Total Kjeldahl Nitrogen as N	1.62	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M166903	NEI.
Nitrate/Nitrite as N	1.7	mg/L		0.02	0.10	0.12	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M166920	ANR
Turbidity	1.3	NTU		0.2	0.2	0.4	Bryan	09/20/23 11:39 ATG	SM2130 B 2011	M166930	NEL
Nicrobiological Analyses											
Fecal Coliform	1400	CFU/100 mL	M5	1	100	100	Bryan	09/19/23 16:23 HDH	SM9222 D 2015	M166851	NEI.
E. Coli	1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/19/23 15:42 HDH	SM9223 B 2004	M166850	NEL
Results run by SM 9223B are reported as	MPN (Most Pro	bable Number). MPN	is comparable to CFU (Colony Form	ning Units). E	oth MPN	and CFU ar	e allowed in most permit	5.		
Metals (Total)							1000				
Phosphorus-Total	4.59	mg/L		0.082	0.041	0.050	Bryan	09/26/23 12:57 ABM	EPA 200.7 R4.4	M167006	NEL.

Page 2 of 11 G031138_1 ATL 051923 FIN_Is 09 27 23 1643

BRYAN FACILITY 635 Phil Gramm Boulevard		A OULA TEALL	AUSTIN FACILITY 3512 Montopolis Dr. Suite A			Analytica	I Report
Bryan, TX 77807		AQUA-TECH	Austin, TX 78744 Phone: (512) 301-9559	TAMU - D	epartment of Bio	ological and	Ag. Eng.
Phone: (979) 778-3707 Fax: (979) 778-3193	M	LABORATORIES	Fax: (512) 301-9552	Repor	rt Printed:	9/27/23	16:43 G031138
TAMU - Ag. EngE-Flow	v / S3 (DH)	Collected: 09/19/23 13:35 by CLIENT	Type	Matrix	C-O-C #		

TAMU - Ag. EngE-Flow / 55 (L	, m)		19/23 14:27 by Hanna			Grab		Non F		031138	
Lab ID# G031138-03	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Baton	
General Chemistry											
BOD (5 day)	<1	mg/L		1	1	1	Bryan	09/20/23 07:22 CTG	SM5210 B 2016	M 166889	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	09/21/23 14:27 SDH	SM2540 D 2015	M167016	HE.
Ammonia as N	1.14	mg/L		0.05	0.05	0.05	Bryan	09/25/23 11:45 KMA	SM4500-NH3 G 2011	M 167131	NEL
Total Kjeldahl Nitrogen as N	1.24	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M166903	NEL
Nitrate/Nitrite as N	0.25	mg/L		0.02	0.02	0.02	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M166920	ANR
Turbidity	0.4	NTU		0.2	0.2	0.4	Bryan	09/20/23 11:39 ATG	SM2130 B 2011	M 166930	NEI.
Microbiological Analyses											
Fecal Coliform	<1	CFU/100 mL		t.	1	1	Bryan	09/19/23 16:23 HDH	SM9222 D 2015	M166851	NEL.
E. Coli	<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/19/23 15:42 HDH	SM9223 B 2004	M166850	NEL

Results run by SM 9223B are reported as MPN (Most Probable Number). MPN is comparable to CFU (Colony Forming Units). Both MPN and CFU are allowed in most permits.

Madala	(Tatall
Metals	I U(d)

Phosphorus-Total	0.127	mg/L	0.082	0.041	0:050	Bryan	09/26/23 13:00 ABM	EPA 200.7 R4.4	M167006	NEL

TAMU - Ag. EngE-Flow / S4	(OP-I)		9/19/23 13:20 by CLIEN 9/19/23 14:27 by Hanna			Type Grab		Matrix Non F		-C # 1138	
Lab ID# G031138-04	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	3	mg/L		1	2	2	Bryan	09/20/23 07:22 CTG	SM5210 B 2016	M166889	NEL
Total Suspended Solids	104	mg/L		1	20	20	Bryan	09/21/23 14:27 SDH	SM2540 D 2015	M167016	NEL
Ammonia as N	0.06	mg/L		0.05	0.05	0.05	Bryan	09/25/23 11:45 KMA	SM4500-NH3 G 2011	M167131	NEI.
Total Kjeldahl Nitrogen as N	7.09	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M166903	NEL.
Nitrate/Nitrite as N	14	mg/L		0.02	0.17	0.20	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 2011	M 166920	ANR
Turbidity	130	NTU		0.2	0.2	0.4	Bryan	09/20/23 11:39 ATG	SM2130 B 2011	M166930	NEL
Microbiological Analyses											
Fecal Coliform	540	CFU/100 mL		1	20	20	Bryan	09/19/23 16:32 HDH	SM9222 D 2015	M166851	NEL
E. Coli	18.9	MPN/100 mL		1.0	1.0	1.0	Bryan	09/19/23 15:42 HDH	SM9223 B 2004	M166850	NEL
Results run by SM 9223B are reported	ed as MPN (Most Pro	bable Number). M	PN is comparable to CFU	(Colony Forn	ning Units). E	oth MPN	and CFU ar	e allowed in most permits	5.		
Metals (Total)											
Phosphorus-Total	4.74	mg/L		0.082	0.041	0.050	Bryan	09/26/23 13:03 ABM	EPA 200.7 R4.4	M 167006	NEL

Form: C:\ELMNT\FORMAT\ATL 051923 FIN_LS.RPT

Page 3 of 11 G031138_1 ATL 051923 FIN_Is 09 27 23 1643

BRYAN FACILITY 635 Phil Gramm Boulevard			-		topolis Dr.						Analytica	I Report
Bryan, TX 77807		QUA-	TECH		Austin, T)	78744			TAMU - Departm	nent of B	iological and	Ag. Eng.
Phone: (979) 778-3707 Fax: (979) 778-3193	IAF	BORAT	ORIES		e: (512) 30 c: (512) 30				Report Printe	d:	9/27/23	16:43
	E EAL	ORAI	UNIEU		_							G031138
TAMU - Ag. EngE-Flow / \$5 (OP-E)		19/23 13:40 by CLIENT 19/23 14:27 by Hannah Cline			Type Grab		Matrix Non F	otable	C-O-C # G031138		
Lab ID# G031138-05	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	
General Chemistry												
BOD (5 day)	<2	mg/L		1	2	2	Bryan	09/20/23 07:22 CTG	SM5210 B 2016		M166889	NEL
Total Suspended Solids	2	mg/L		1	1	1	Bryan	09/21/23 14:27 SDH	SM2540 D 2015		M167016	NEI.
Ammonia as N	0.06	mg/L		0.05	0.05	0.05	Bryan	09/25/23 11:45 KMA	SM4500-NH3 G 201	11	M167131	NEL
Total Kjeldahl Nitrogen as N	2.94	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0		M166903	NEL
Nitrate/Nitrite as N	5.2	mg/L		0.02	0.17	0.20	Bryan	09/20/23 12:02 KMA	SM4500-NO3-F 201	1	M166920	ANR
Turbidity	14	NTU		0.2	0.2	0.4	Bryan	09/20/23 11:39 ATG	SM2130 B 2011		M166930	NEI.
Microbiological Analyses												
Fecal Coliform	<10000	CFU/100 mL	M5, R-01	1°	10000	10000	Bryan	09/19/23 16:32 HDH	SM9222 D 2015		M166851	NEL.
E. Coli	2.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/19/23 15:42 HDH	SM9223 B 2004		M166850	MEL

Results run by SM 9223B are reported as MPN (Most Probable Number). MPN is comparable to CFU (Colony Forming Units). Both MPN and CFU are allowed in most permits.

hosphorus-Total	4.11	mg/L	0.082	0.041	0.050	Bryan	09/26/23 13:06 ABM	EPA 200.7 R4.4	M167006	NEL
-----------------	------	------	-------	-------	-------	-------	--------------------	----------------	---------	-----

	Explanation of Notes
BOD-07	Optional second BOD/CBOD GG was outside expected range. Results accepted on one required passing GG.
M5	This result is estimated as no plates contained colony counts within the method-specified range.
R-01	The Reporting Limit for this analyte has been raised to account for matrix interference.
SL-01	The dried residue did not yield between 2.5 and 200 mg as specified in the method. Due to holding time constraints or insufficient sample volume, the sample cannot be reanalyzed.

Form: C:\ELMINT\FORMAT\ATL 051923 FIN_LS.RPT

Page 4 of 11 G031138_1 ATL 051923 FIN_Is 09 27 23 1643

	ALLA	TECH	3512 M	ontopolis Dr.	Suite A	-			Analytic	al Repor
A	AUK	IECH	Ph					TAMU - Departmen	t of Biological an	d Ag. Eng
IAF	BORAT	ORIES						Report Printed:	9/29/23	16:5
E FAR	JORAI	ORIES								G031482
(GH-I)			line		Type Grab					
Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
2	mg/L		1	2	2	Bryan	09/21/23 07:30 CTG	SM5210 B 2016	M166959	NEL
9	mg/L	SL-02	1	4	4	Bryan	09/22/23 12:06 MRH	SM2540 D 2015	M167077	NEI.
<0.05	mg/L		0.05	0.05	0.05	Bryan	09/26/23 11:40 KMA	SM4500-NH3 G 2011	M167183	NEL
1.13	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M167013	NEL.
15	mg/L		0.02	0.17	0.20	Bryan	09/27/23 14:20 KMA	SM4500-NO3-F 2011	M167268	ANR
6.4	NTU	G-01	0.2	0.2	0.4	Bryan	09/20/23 11:39 ATG	SM2130 B 2011	M166930	NEL.
40	CFU/100 mL	M5	t.	10	10	Bryan	09/20/23 17:00 HDH	SM9222 D 2015	M166913	NEL.
70.8	MPN/100 mL		1.0	1.0	1.0	Bryan	09/20/23 14:38 HDH	SM9223 B 2004	M166912	NEL
3.90	mg/L		0.082	0.041	0.050	Bryan	09/26/23 13:16 ABM	EPA 200.7 R4.4	M167006	NEL
(GH-E)			Cline		Type Grab					
Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
2	mg/L		1	2	2	Bryan	09/21/23 07:30 CTG	SM5210 B 2016	M166959	NEL
<1	mg/L		1	1	1	Bryan	09/22/23 12:06 MRH	SM2540 D 2015	M167077	NEL
<0.05	mg/L		0.05	0.05	0.05	Bryan	09/26/23 11:40 KMA	SM4500-NH3 G 2011	M167183	NEL.
1.71	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M167013	NEL.
2.0	mg/L		0.02	0.10	0.12	Bryan	09/27/23 14:20 KMA	SM4500-NO3-F 2011	M167268	ANR
1.5	NTU	G-01	0.2	0.2	0.4	Bryan	09/20/23 11:39 ATG	SM2130 B 2011	M166930	NEL
in the second								al instrumped all		
3000	CFU/100 mL		1	100	100	Bryan	09/20/23 17:16 HDH	SM9222 D 2015	M166913	NEI.
<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/20/23 14:38 HDH	SM9223 B 2004	M166912	NEL
d as MPN (Most Pro	bable Number). MPN	is comparable to CFU (C	Colony Form	ning Units). E	oth MPN	and CFU a	re allowed in most permit	5,		
	CH-I) CH-I) Result 2 9 <0.05 1.13 15 6.4 40 70.8 4 as MPN (Most Pro 3.90 CH-E) Result <2 <1 <0.05 1.71 2.0 1.5 3000 <1.0	Collected: 09// Received: 09// Received: 09// Received: 09// Received: 09// Received: 09// Received: 09// 9 2 mg/L 3 mg/L 40 CFU/100 mL 113 mg/L 6.4 NTU 40 CFU/100 mL 70.8 MPN/100 mL 43 sMPN (Most Probable Number). MPN 3.90 3.90 mg/L 43 sMPN (Most Probable Number). MPN 3.90 40 CFU/100 mL 70.8 MPN/100 mL 41 smg/L 0.00 42 mg/L 43 smg/L 1.11 40 CFU/100 mL 41 mg/L 42 mg/L 43 mg/L 41 mg/L 42 mg/L 1.5 NTU 3000 CFU/100 mL 4.1.0 MPN/100 mL	Received: 09/20/23 12:46 by Hannah (Result Units Notes 2 mg/L SL-02 40.05 mg/L SL-02 40.05 mg/L 6.4 40 CFU/100 mL M5 70.8 MPN/100 mL M5 3.90 mg/L GH-E) Collected: 09/20/23 10:33 by CLIENT Received: 09/20/23 12:46 by Hannah (C GH-E) Collected: 09/20/23 12:46 by Hannah (C 40.05 mg/L 41 mg/L 40.05 mg/L 1.71 mg/L 2.0 mg/L 1.5 NTU G-01 3000 CFU/100 mL	ALABORATORIES More State GH-I) Collected: 09/20/23 10:24 by CLIENT Received: 09/20/23 12:46 by Hannah Cline Result Units Notes MDL 2 mg/L 1 9 3 mg/L SL-02 1 40.05 mg/L 0.05 1.13 mg/L 0.02 6.4 NTU G-01 0.2 40 CFU/100 mL M5 1 70.8 MPN/100 mL 1.0 0 41 as MPN (Most Probable Number). MPN is comparable to CFU (Colorry Form 3.90 mg/L 0.082 GH-E) Collected: 09/20/23 10:33 by CLIENT Received: 08/20/23 12:48 by Hannah Cline MDL GH-E) Collected: 09/20/23 12:48 by Hannah Cline MDL 41 mg/L 1 1 42 mg/L 1 1 43.90 mg/L 0.082 MDL 43 Mg/L 0.082 MDL 44 Mg/L 0.05 1 41 mg/L <td< td=""><td>Collected: 09/20/23 10:24: by CLIENT Reserved: 09/20/23 12:46: by Hannah Cline: MDL Adj MDL 7 mg/L 1 2 9 mg/L 1 2 9 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.02 0.17 6.4 0.02 0.17 6.4 1 0 1.0</td><td>Collected: 09/20/23 10:24 by CLIENT Received: 09/20/23 12:46 by Hannah Cline Type Grab Result Units Notes MDL AdJMDL SOL 2 mg/L 1 2 2 9 mg/L SL-02 1 4 4 40.05 mg/L 0.05 0.05 0.05 0.05 13 mg/L 0.02 0.13 0.20 0.44 4 40 CFU/100 mL M5 1 10 10 10 10.8 MPN/100 mL 0.022 0.041 0.050 0.05 0.05</td><td>AQUA-TECH 3512 Montopolis Dr. Suite A Austin, TX 78744 Prome: (612) 301-0659 GH-II) Collected: 09/20/23 10:24 by CLIENT Received: 08/20/23 12:48 by Hannah Cline Type Grab Result Units Notes MDL AdjMDL Sold Lab 2 mg/L 1 2 2 Byan 9 mg/L SL-02 1 4 4 Byan 40.05 mg/L 0.05 0.05 0.05 Byan 1 2 0.05 0.05 0.05 Byan 1.13 mg/L 0.05 0.05 0.05 Byan 1.13 mg/L 0.05 0.05 0.05 Byan 6.4 NTU G-01 0.2 0.2 0.4 Byan 40 CFU/100 mL M5 1 10 10 Byan 70.8 MPN/100 mL M5 1 0.05 Byan 3.90 mg/L 0.082 0.041 0.050 Byan 6H-E)</td><td>AQUA-TECH LABORATORIES 3612 Montopolis Dr. Suite A Austin, TX 78744 Phone: (512) 301-9652 GH-I) Collected: 09/20/23 10:24 by CLIENT Received: 09/20/23 12:40 by Hamah Cline Type Gab Type (abb Matrix Montopolis Fax: (512) 301-9652 GH-II Collected: 09/20/23 12:40 by Hamah Cline Type Gab Type (abb Matrix Montopolis Gab Matrix Montopolis Gab Type (abb Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix Montopolis Gab Matrix</td><td>ABOUA-TECH LABORATORIES 3512 Auntopolis Dr. Sulta A Phone: (\$12) 301-8650 Fax: (\$12) 301-8552 TAMU - Departmen Report Printed: GH-I) Collected: 08/20/23 10:24 by CLIENT Received: 08/20/23 12:48 by Hannah Cline Type Grab Matrix: Since Matrix: Non Potable Collected: 08/20/23 10:24 by CLIENT Received: 08/20/23 12:48 by Hannah Cline Type Grab Matrix: Non Potable Collected: 08/20/23 10:24 by CLIENT Received: 08/20/23 10:24 by CLIENT Received: 08/20/23 12:32 12:48 by Hannah Cline Type Grab Matrix: Non Potable Collected: 08/20/23 10:24 by CLIENT Received: 08/20/23 12:32 12:48 by Hannah Cline Type Grab Matrix: Non Potable Collected: 08/20/23 10:32 10:50 MH 2 mg/L 1 2 Byan 08/2123 07:30 CTG McBtod 30 mg/L 0.03 0.05 0.58 Byan 08/223 12:30 KM EPA 351:2 R2.0 11.13 mg/L 0.03 0.13 0.13 0.20 Byan 08/2023 17:00 HD M4400-V03-F 2011 6.4 NTU G-01 0.2 0.24 Byan 08/2023 17:00 HD M4500-V03-F 2011 6.4 NTU Grab 1 0 10 Byan 08/2023 13:10 KM</td><td>And UNA-FIECH LABORATORIE Still Montgoolin Dr. Suite A Austin, TX 3744 Prome: (512) 301-6662 Austin, TX 3744 Prome: (512) 301-6662 TAMU - Department of Biological an Report Printed: Still Montgoolin Report Printed: Still Montgoolin Still Montgoolin Report Print Montgooli</td></td<>	Collected: 09/20/23 10:24: by CLIENT Reserved: 09/20/23 12:46: by Hannah Cline: MDL Adj MDL 7 mg/L 1 2 9 mg/L 1 2 9 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.02 0.17 6.4 0.02 0.17 6.4 1 0 1.0	Collected: 09/20/23 10:24 by CLIENT Received: 09/20/23 12:46 by Hannah Cline Type Grab Result Units Notes MDL AdJMDL SOL 2 mg/L 1 2 2 9 mg/L SL-02 1 4 4 40.05 mg/L 0.05 0.05 0.05 0.05 13 mg/L 0.02 0.13 0.20 0.44 4 40 CFU/100 mL M5 1 10 10 10 10.8 MPN/100 mL 0.022 0.041 0.050 0.05 0.05	AQUA-TECH 3512 Montopolis Dr. Suite A Austin, TX 78744 Prome: (612) 301-0659 GH-II) Collected: 09/20/23 10:24 by CLIENT Received: 08/20/23 12:48 by Hannah Cline Type Grab Result Units Notes MDL AdjMDL Sold Lab 2 mg/L 1 2 2 Byan 9 mg/L SL-02 1 4 4 Byan 40.05 mg/L 0.05 0.05 0.05 Byan 1 2 0.05 0.05 0.05 Byan 1.13 mg/L 0.05 0.05 0.05 Byan 1.13 mg/L 0.05 0.05 0.05 Byan 6.4 NTU G-01 0.2 0.2 0.4 Byan 40 CFU/100 mL M5 1 10 10 Byan 70.8 MPN/100 mL M5 1 0.05 Byan 3.90 mg/L 0.082 0.041 0.050 Byan 6H-E)	AQUA-TECH LABORATORIES 3612 Montopolis Dr. Suite A Austin, TX 78744 Phone: (512) 301-9652 GH-I) Collected: 09/20/23 10:24 by CLIENT Received: 09/20/23 12:40 by Hamah Cline Type Gab Type (abb Matrix Montopolis Fax: (512) 301-9652 GH-II Collected: 09/20/23 12:40 by Hamah Cline Type Gab Type (abb Matrix Montopolis Gab Matrix Montopolis Gab Type (abb Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Montopolis Gab Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix Montopolis Gab Matrix	ABOUA-TECH LABORATORIES 3512 Auntopolis Dr. Sulta A Phone: (\$12) 301-8650 Fax: (\$12) 301-8552 TAMU - Departmen Report Printed: GH-I) Collected: 08/20/23 10:24 by CLIENT Received: 08/20/23 12:48 by Hannah Cline Type Grab Matrix: Since Matrix: Non Potable Collected: 08/20/23 10:24 by CLIENT Received: 08/20/23 12:48 by Hannah Cline Type Grab Matrix: Non Potable Collected: 08/20/23 10:24 by CLIENT Received: 08/20/23 10:24 by CLIENT Received: 08/20/23 12:32 12:48 by Hannah Cline Type Grab Matrix: Non Potable Collected: 08/20/23 10:24 by CLIENT Received: 08/20/23 12:32 12:48 by Hannah Cline Type Grab Matrix: Non Potable Collected: 08/20/23 10:32 10:50 MH 2 mg/L 1 2 Byan 08/2123 07:30 CTG McBtod 30 mg/L 0.03 0.05 0.58 Byan 08/223 12:30 KM EPA 351:2 R2.0 11.13 mg/L 0.03 0.13 0.13 0.20 Byan 08/2023 17:00 HD M4400-V03-F 2011 6.4 NTU G-01 0.2 0.24 Byan 08/2023 17:00 HD M4500-V03-F 2011 6.4 NTU Grab 1 0 10 Byan 08/2023 13:10 KM	And UNA-FIECH LABORATORIE Still Montgoolin Dr. Suite A Austin, TX 3744 Prome: (512) 301-6662 Austin, TX 3744 Prome: (512) 301-6662 TAMU - Department of Biological an Report Printed: Still Montgoolin Report Printed: Still Montgoolin Still Montgoolin Report Print Montgooli

4.48

mg/L

Phosphorus-Total

Page 2 of 11 G031482_1 ATL 051923 FIN_Is 09 29 23 1655

EPA 200.7 R4.4

M167006

NEL.

09/26/23 13:19 ABM

0.082 0.041 0.050 Bryan

Analytical Report	AUSTIN FACILITY 3512 Montopolis Dr. Suite A	A OLIA TEOLI	BRYAN FACILITY 635 Phil Gramm Boulevard
TAMU - Department of Biological and Ag. Eng.	Austin, TX 78744 Phone: (512) 301-9559	AQUA-TECH	Bryan, TX 77807 Phone: (979) 778-3707
Report Printed: 9/29/23 16:55	Fax: (512) 301-9552	LABORATORIES	Fax: (979) 778-3193
G031482			

TAMU - Ag. EngE-Flow / \$3 (DH)	KII .		/20/23 11:00 by CLIENT /20/23 12:46 by Hannah Cline	¢.		Type Grab		Matrix Non P	otable	C-O-C # G031482	
Lab ID# G031482-03	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Baton	
General Chemistry											
BOD (5 day)	<1	mg/L		1	1	1	Bryan	09/21/23 07:30 CTG	SM5210 B 2016	M166959	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	09/22/23 12:06 MRH	SM2540 D 2015	M167077	NG.
Ammonia as N	1.18	mg/L		0.05	0.05	0.05	Bryan	09/26/23 11:40 KMA	SM4500-NH3 G 201	11 M167183	NEL
Total Kjeldahl Nitrogen as N	1.33	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M167013	NEL
Nitrate/Nitrite as N	0.27	mg/L		0.02	0.02	0.02	Bryan	09/27/23 14:20 KMA	SM4500-NO3-F 201	M167268	ANR
Turbidity	0.4	NTU	G-01	0.2	0.2	0.4	Bryan	09/20/23 11:39 ATG	SM2130 B 2011	M 166930	NEI.
Wicrobiological Analyses											
Fecal Coliform	<1	CFU/100 mL		1	1	1	Bryan	09/20/23 17:16 HDH	SM9222 D 2015	M166913	NEL.
E. Coli	<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/20/23 14:38 HDH	SM9223 B 2004	M166912	NEL

Results run by SM 9223B are reported as MPN (Most Probable Number). MPN is comparable to CFU (Colony Forming Units). Both MPN and CFU are allowed in most permits.

Metals (Total	

Phosphorus-Total	0.104	mg/L	0.082	0.041	0.050	Bryan	09/26/23 13:22 ABM	EPA 200.7 R4.4	M167006	NEL

TAMU - Ag. EngE-Flow / S4	(OP-I)		09/20/23 10:40 by CLIENT 09/20/23 12:46 by Hannah			Type Grab		Matrio Non F		D-C # 31482	
Lab ID# G031482-04	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	09/21/23 07:30 CTG	SM5210 B 2016	M166959	NEL.
Total Suspended Solids	120	mg/L		1	20	20	Bryan	09/21/23 14:27 SDH	SM2540 D 2015	M167017	NEL
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	09/26/23 11:40 KMA	SM4500-NH3 G 2011	M167183	NEL.
Total Kjeldahl Nitrogen as N	3.49	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M167013	NEL.
Nitrate/Nitrite as N	15	mg/L		0.02	0.17	0.20	Bryan	09/27/23 14:20 KMA	SM4500-NO3-F 2011	M167268	ANR
Turbidity	40	NTU	G-01	0.2	0.2	0.4	Bryan	09/20/23 11:39 ATG	SM2130 B 2011	M166930	NEL
Nicrobiological Analyses											
Fecal Coliform	230	CFU/100 mL		1	10	10	Bryan	09/20/23 17:16 HDH	SM9222 D 2015	M166913	NG.
E. Coli	109	MPN/100 mL		1.0	1.0	1.0	Bryan	09/20/23 14:38 HDH	SM9223 B 2004	M166912	NEL
Results run by SM 9223B are reported	ed as MPN (Most Pro	bable Number). M	IPN is comparable to CFU	(Colony Forn	ning Units). E	Both MPN	and CFU a	re allowed in most permits	5.		
Metals (Total)											
Phosphorus-Total	4.40	mg/L		0.082	0.041	0.050	Bryan	09/26/23 13:25 ABM	EPA 200.7 R4.4	M167006	NEL

Form: C:\ELMNT\FORMAT\ATL 051923 FIN_LS.RPT

Page 3 of 11 G031482_1 ATL 051923 FIN_Is 09 29 23 1655

BRYAN FACILITY 635 Phil Gramm Boulevard Bryan, TX 77807	AC	QUA	-TECH	3512 N	AUSTIN F. Iontopolis Dr. Austin, T.	Suite A X 78744	-		TAMU - Departme	N. C. 13. 1 & .	analytical	
Phone: (979) 778-3707 Fax: (979) 778-3193			TORIES	Ph	none: (512) 3 Fax: (512) 3				Report Printed		9/29/23	16:55 G031482
TAMU - Ag. EngE-Flow / \$5 (O	Р-Е)		09/20/23 10:44 by CLIENT 09/20/23 12:46 by Hannah			Type Grab		Matri Non F		C-O-C # 3031482		
Lab ID# G031482-05	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	B	aton	
General Chemistry												-
BOD (5 day)	2	mg/L		1	2	2	Bryan	09/21/23 07:30 CTG	SM5210 B 2016	м	166959	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	09/21/23 14:27 SDH	SM2540 D 2015	м	167017	NEL.
Ammonia as N	0.05	mg/L		0.05	0.05	0.05	Bryan	09/26/23 11:40 KMA	SM4500-NH3 G 2011	м	167183	NEL
Total Kjeldahl Nitrogen as N	3.85	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	м	167013	NEL

Total Kieldahl Nitrogen as N	3.85	mg/L		0.13	0.13	0.20	Bryan	09/26/23 12:30 KMA	EPA 351.2 R2.0	M167013	
and the second state of th								a standard a state of the state of the			
Nitrate/Nitrite as N	4.4	mg/L		0.02	0.10	0.12	Bryan	09/27/23 14:20 KMA	SM4500-NO3-F 2011	M167268	ANR
Turbidity	8.4	NTU	G-01	0.2	0.2	0.4	Bryan	09/20/23 11:39 ATG	SM2130 B 2011	M166930	NEI.
Nicrobiological Analyses											
Fecal Coliform	<10000	CFU/100 mL	M5, R-01	T.	10000	10000	Bryan	09/20/23 17:16 HDH	SM9222 D 2015	M166913	NEI.
E. Coli	<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	09/20/23 14:38 HDH	SM9223 B 2004	M166912	NEL

Metals (Total)										
Phosphorus-Total	4.97	mg/L	0.082	0.041	0.050	Bryan	09/26/23 13:28 ABM	EPA 200.7 R4.4	M167006	NEL

	Explanation of Notes
BOD-07	Optional second BOD/CBOD GG was outside expected range. Results accepted on one required passing GG.
G-01	This sample was added to an analytical run already in progress. See the prep time for when this sample was added.
M5	This result is estimated as no plates contained colony counts within the method-specified range.
R-01	The Reporting Limit for this analyte has been raised to account for matrix interference.
SL-02	The dried residue did not yield between 2.5 and 200 mg as specified in the method. The sample was not re-analyzed due to extended filtration time.

Page 4 of 11 G031482_1 ATL 051923 FIN_Is 09 29 23 1655

BRYAN FACILITY 635 Phil Gramm Boulevard				3512 M	AUSTIN F					Analytica	al Report
Bryan, TX 77807	AQ	UA-T	ECH		Austin, T	x 78744			TAMU - Departmen	t of Biological an	d Ag. Eng
Phone: (979) 778-3707 Fax: (979) 778-3193			RIES, INC.		one: (512) 3 Fax: (512) 3				Report Printed:	11/3/23	16:51
-		Bonnier									G031483
TAMU - Ag. EngE-Flow / S1			16/23 10:00 by CLIENT 16/23 11:06 by Hannah Clin	e		Type Grab		Matrix Non F		O-C # 031483	
Lab ID# G031483-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	<2	mg/L		1	2	2	Bryan	10/18/23 07:30 VML	SM5210 B 2016	M168197	NEL
Total Suspended Solids	6	mg/L		1	2	2	Bryan	10/16/23 13:13 SDH	SM2540 D 2015	M168126	NEL.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/23/23 10:49 KMA	SM4500-NH3 G 2011	M168433	NEL
Total Kjeldahl Nitrogen as N	<0.20	mg/L		0.13	0.13	0.20	Bryan	10/17/23 15:00 KMA	EPA 351.2 R2.0	M168171	NEL
Nitrate/Nitrite as N	18	mg/L		0.02	0.17	0.20	Bryan	10/18/23 11:48 KMA	SM4500-NO3-F 2011	M168236	ANR
Turbidity	3.6	NTU	C-02	0.2	0.2	0.4	Bryan	10/16/23 11:38 ATG	SM2130 B 2011	M168114	NEL.
Microbiological Analyses											
Fecal Coliform	240	CFU/100 mL	F2	1	10	10	Bryan	10/16/23 14:11 HDH	SM9222 D 2015	M167932	NEL.
E. Coli	1120	MPN/100 mL		1.0	1.0	1.0	Bryan	10/16/23 12:46 HDH	SM9223 B 2004	M168094	NEL
Results run by SM 9223B are reported as	s MPN (Most Prot	able Number). MPN	is comparable to CFU (Col	ony Form	ing Units). B	oth MPN	and CFU ar	re allowed in most permits			
Metals (Total)											
Phosphorus-Total	3.65	mg/L		0.082	0.041	0.050	Bryan	10/26/23 11:54 MRG	EPA 200.7 R4.4	M168261	NEL
TAMU - Ag. EngE-Flow / S2		Collected: 10/	16/23 10:10 by CLIENT			Туре		Matrix	C-	0-C#	
		Received: 10/	16/23 11:06 by Hannah Clin	e		Grab		Non P	otable GC	31483	
Lab ID# G031483-02	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	10/18/23 07:30 VML	SM5210 B 2016	M168197	NEL.
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	10/16/23 13:13 SDH	SM2540 D 2015	M168126	NEL
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/23/23 10:49 KMA	SM4500-NH3 G 2011	M168433	NEL.
Total Kjeldahl Nitrogen as N	1.42	mg/L		0.13	0.13	0.20	Bryan	10/17/23 15:00 KMA	EPA 351.2 R2.0	M168171	NEL.
Nitrate/Nitrite as N	12	mg/L		0.02	0.26	0.30	Bryan	10/18/23 11:48 KMA	SM4500-NO3-F 2011	M168236	ANR
Turbidity	2.9	NTU		0.2	0.2	0.4	Bryan	10/16/23 11:38 ATG	SM2130 B 2011	M168114	NEL
Microbiological Analyses	operativity is a		a succession and the second					interior controlaci	or in concort-fi		

1

1.0

20

1.0

20

1.0

0.082 0.041 0.050 Bryan

Bryan

Bryan

Results run by SM 9223B are reported as MPN (Most Probable Number). MPN is comparable to CFU (Colony Forming Units). Both MPN and CFU are allowed in most permits.

F2

CFU/100 mL

MPN/100 mL

mg/L

E. Coli

Fecal Coliform

540 (see

260

3.81

sample memo)

Form: C:\ELMNT\FORMAT\ATL 051823 FIN_LS.RPT

Page 2 of 11 G031483_1 ATL 051823 FIN_Is 11 03 23 1651

SM9222 D 2015

SM9223 B 2004

EPA 200.7 R4.4

M167932

M168094

M168261

NEL.

NEL

NEL

10/16/23 14:11 HDH

10/16/23 12:48 HDH

10/26/23 11:58 MRG

Metals (Total) Phosphorus-Total

BRYAN FACILITY 635 Phil Gramm Boulevard				3512 M	AUSTIN F		-			Analytica	I Report
Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193			RIES, INC.	Ph	Austin, T. one: (512) 3 Fax: (512) 3	K 78744 01-9559			TAMU - Department o Report Printed:	f Biological and 11/3/23	Ag. Eng. 16:51 G031483
G031483-02 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
Microbiological Analyses											-
Fecal Coliform	110 (See sample memo)	CFU/100 mL	M5	1	4	4	Bryan	10/16/23 14:11 HDH	SM9222 D 2015	M167932	NEL

Positive and negative colonies for some fecal coliform plates were confirmed as per SM0222 methodology. Colonies that exhibited positive atypical morphology were originally counted as positive. This result is the first Fecal Coliform result on the report under "Microbiological analyses." Because these colonies were confirmed as negative after the secondary method was completed, ATL included that data as the second Fecal Coliform result under the ID labeled "re-analysis." Management wished to present all data as, while the confirmation test showed some colonies to be negative, their morphology most closely resembled positive colonies.

TAMU - Ag. EngE-Flow / S4			18/23 10:12 by CLIENT 18/23 11:06 by Hannah Cline	e		Type Grab		Matrix Non F		C-O-C # 3031483		
Lab ID# G031483-04	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Baton	
General Chemistry												
BOD (5 day)	2	mg/L		1	2	2	Bryan	10/18/23 07:30 VML	SM5210 B 2016		M168197	110
Total Suspended Solids	8	mg/L		1	2	2	Bryan	10/16/23 13:13 SDH	SM2540 D 2015		M168126	M
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/23/23 10:49 KMA	SM4500-NH3 G 2011		M168433	N
Total Kjeldahl Nitrogen as N	0.54	mg/L	MS-01	0.13	0.13	0.20	Bryan	10/24/23 12:41 KMA	EPA 351.2 R2.0		M168346	N
Nitrate/Nitrite as N	18	mg/L		0.02	0.26	0.30	Bryan	10/18/23 11:48 KMA	SM4500-NO3-F 2011		M168236	A
Turbidity	13	NTU		0.2	0.2	0.4	Bryan	10/16/23 11:38 ATG	SM2130 B 2011		M168114	N
Microbiological Analyses												
Fecal Coliform	600 (see sample memo)	CFU/100 mL	F2	1	10	10	Bryan	10/16/23 14:41 HDH	SM9222 D 2015		M167932	~
E. Coli	921	MPN/100 mL		1.0	1.0	1.0	Bryan	10/16/23 12:48 HDH	SM9223 B 2004		M168094	M
Results run by SM 9223B are reported as	MPN (Most Probabl	e Number). MPN	is comparable to CFU (Cold	ony Forming	g Units). B	oth MPN	and CFU ar	e allowed in most permits	s.			
Metals (Total)												
Phosphorus-Total	3.63	mg/L		0.082	0.041	0.050	Bryan	10/26/23 12:01 MRG	EPA 200.7 R4.4		M168261	-
G031483-04 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	
Microbiological Analyses												
Fecal Coliform	460 (see sample memo)	CFU/100 mL		1	10	10	Bryan	10/16/23 14:41 HDH	SM9222 D 2015		M167932	Ń

Positive and negative colonies or some recar colonium places were continued as per smezze and the positive any local indipinately were only and the positive any local indipinately were only individed that data as the second Period Colform Fecal Colform result on the report under "Microbiological analyses." Because these colonies were confirmed as negative after the secondary method was completed, ATL individed that data as the second Period Colform result under the ID labeled "re-analysis." Management wished to present all data as, while the confirmation test showed some colonies to be negative, their morphology most closely resembled positive colonies.

Form: C:VELMINT/FORMATIATL 051823 FIN_LS.RPT

Page 3 of 11 G031483 1 ATL 051823 FIN Is 11 03 23 1651

BRYAN FACILITY 635 Phil Gramm Boulevard	A -			3512 M	AUSTIN F		_				Analytica	Report
Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193			TECH	P	Austin, T hone: (512) 3 Fax: (512) 3	K 78744 01-9559				partment of Bio Printed:	ological and 11/3/23	Ag. Eng. 16:51 G031483
TAMU - Ag. EngE-Flow / S5			10/16/23 10:00 by CLIE 10/16/23 11:06 by Hanr			Type Grab			Matrix Non Potable	C-O-C # G031483		
ab ID# G031483-05	Reput	Units	Notes	MDI	Adimor	500	1.20	Analyzad	Method		Baten	

Lab ID# G031483-05	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Baton	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	10/18/23 07:30 VML	SM5210 B 2016	M168197	NEL
Total Suspended Solids	<1	mg/L.		1	1	1	Bryan	10/16/23 13:13 SDH	SM2540 D 2015	M168126	NEL.
Ammonia as N	<0.05	mg/L.		0.05	0.05	0.05	Bryan	10/23/23 10:49 KMA	SM4500-NH3 G 2011	M168433	NEL
Total Kjeldahl Nitrogen as N	0.98	mg/L	MS-01	0.13	0.13	0.20	Bryan	10/24/23 12:41 KMA	EPA 351.2 R2.0	M168346	NEL
Nitrate/Nitrite as N	11	mg/L		0.02	0.10	0.12	Bryan	10/18/23 11:48 KMA	SM4500-NO3-F 2011	M168236	ANR
Turbidity	5.3	NTU		0.2	0.2	0.4	Bryan	10/16/23 11:38 ATG	SM2130 B 2011	M168114	NEI.
Microbiological Analyses											
Fecal Coliform	<2	CFU/100 mL	F2, M5	t	2	2	Bryan	10/16/23 14:41 HDH	SM9222 D 2015	M167932	NEL.
E. Coli	14.8	MPN/100 mL		1.0	1.0	1.0	Bryan	10/16/23 12:48 HDH	SM9223 B 2004	M168094	NEL

letals (Total)										
Phosphorus-Total	3.36	mg/L	0.082	0.041	0.050	Bryan	10/26/23 12:04 MRG	EPA 200.7 R4.4	M168261	NEL

Explanation of Notes									
BOD-07	Optional second BOD/CBOD GG was outside expected range. Results accepted on one required passing GG.								
C-02	Result confirmed by re-analysis.								
F2	Verified fecal coliform count/100mL.								
M5	This result is estimated as no plates contained colony counts within the method-specified range.								
MS-01	The MS and/or MSD recovery was outside acceptance limits. Investigation concludes it is a sample- specific matrix effect and the batch was accepted based on acceptable LCS and /or LCSD recovery.								

Page 4 of 11 G031483_1 ATL 051823 FIN_Is 11 03 23 1651

	BORATO	RIES, INC.	Pho	ntopolis Dr. Austin, T) ne: (512) 30 ax: (512) 30	78744			TAMU - Department	of Biological and	Ag. Eng.	
LA	BORATO				01-9559			TAMU - Department of Biological and Ag. Eng			
			1.00		1-9552			Report Printed:	11/3/23	16:51	
-1)	Collected A									G032179	
	Collected: 10/17/23 10:40 by CLIENT Received: 10/17/23 12:19 by Hannah Cline						Matrix Non Potable		C # 2179		
Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch		
2	mg/L		1	2	2	Bryan	10/18/23 07:30 VML	SM5210 B 2016	M168197	NEL	
5	mg/L	G-01	1	2	2	Bryan	10/17/23 11:57 SDH	SM2540 D 2015	M168176	NEL.	
<0.05	mg/L		0.05	0.05	0.05	Bryan	10/23/23 10:49 KMA	SM4500-NH3 G 2011	M168463	NEL	
<0.20	mg/L	MS-01	0.13	0.13	0.20	Bryan	10/24/23 12:41 KMA	EPA 351.2 R2.0	M168346	NEL	
19	mg/L		0.02	0.17	0.20	Bryan	10/18/23 11:48 KMA	SM4500-NO3-F 2011	M168236	AMR	
3.3	NTU	G-01	0.2	0.2	0.4	Bryan	10/17/23 10:34 ATG	SM2130 B 2011	M168173	NEL.	
140	CFU/100 mL		1	4	4	Bryan	10/17/23 15:33 HDH	SM9222 D 2015	M168163	NEL.	
308	MPN/100 mL		1.0	1.0	1.0	Bryan	10/17/23 14:39 HDH	SM9223 B 2004	M168162	NEL	
MPN (Most Prot	able Number). Mi	PN is comparable to CFU (Cold	ony Formi	ng Units). B	oth MPN	and CFU an	e allowed in most permits				
3.44	mg/L		0.082	0.041	0.050	Bryan	10/26/23 12:07 MRG	EPA 200.7 R4.4	M168261	NEL	
E)	Collected: 1	0/17/23 11:40 by CLIENT			Type		Matrix	C-0-	C#		
TAMU - Ag. EngE-Flow / S2 (GH-E)		Received: 10/17/23 12:19 by Hannah Cline			Grab		Non P	table G03217	2179		
Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch		
2	mg/L		1	2	2	Bryan	10/18/23 07:30 VML	SM5210 B 2016	M168197	NEL	
<1	mg/L	G-01	1	1	1	Bryan	10/17/23 11:57 SDH	SM2540 D 2015	M168176	NEL	
<0.05	mg/L		0.05	0.05	0.05	Bryan	10/23/23 10:49 KMA	SM4500-NH3 G 2011	M168463	NEI.	
0.37	mg/L	MS-01	0.13	0.13	0.20	Bryan	10/24/23 12:41 KMA	EPA 351.2 R2.0	M168346	NEI.	
	<2 5 <0.05 <0.20 19 3.3 140 308 MPN (Most Prot 3.44 E) Result <2 <1 <0.05	Result Units <2	Result Units Notes <2	Result Units Notes MDL <2	Result Units Notes MDL Adj MDL <2	Result Units Notes MDL Adj MDL SOL <2	Result Units Notes MDL Adj MDL SQL Lab <2	Result Units Notes MDL Adj MDL SQL Lab Anaiyzed <2	Result Units Notes MDL Adj MDL SQL Lab Analyzed Method <2	Result Units Notes NDL Adj NDL SQL Lab Analyzed Method Baton <2	

0.02

0.2

1

1.0

0.26

0.2

20

1.0

0.082 0.041

0.30

0.4

20

1.0

0.050 Bryan

Bryan

Bryan

Bryan

Bryan

10/18/23 11:48 KMA

10/17/23 10:34 ATG

10/17/23 15:33 HDH

10/17/23 14:39 HDH

10/26/23 12:16 MRG

Form: C:\ELMINT\FORMAT\ATL 051823 FIN_LS.RPT

Nitrate/Nitrite as N

Microbiological Analyses Fecal Coliform

Turbidity

E. Coli

Metals (Total) Phosphorus-Total 11

2.9

51.2

3.68

640 (see

sample memo)

mg/L

NTU

mg/L

CFU/100 mL

MPN/100 mL

G-01

Results run by SM 9223B are reported as MPN (Most Probable Number). MPN is comparable to CFU (Colony Forming Units). Both MPN and CFU are allowed in most permits.

Page 2 of 11 G032179_1 ATL 051823 FIN_Is 11 03 23 1651

SM4500-NO3-F 2011

SM2130 B 2011

SM9222 D 2015

SM9223 B 2004

EPA 200.7 R4.4

M168236

M168173

M168163

M168162

M168261

ANR

NEL

NEL.

NEL

NEL

BRYAN FACILITY 635 Phil Gramm Boulevard Bryan, TX 77807	QUA-TECH				AUSTIN FACILITY 3512 Montopolis Dr. Suite A Austin, TX 78744				TAMIL Department o		Analytical Report	
Phone: (979) 778-3707 Fax: (979) 778-3193			RIES, INC.		ione: (512) 3 Fax: (512) 3		_		Report Printed:	11/3/23	16:51 G032179	
G032179-02 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch		
Microbiological Analyses											-	
Fecal Coliform	80 (see sample memo)	CFU/100 mL	M5	1	20	20	Bryan	10/17/23 15:33 HDH	SM9222 D 2015	M168163	NEL	

Positive and negative colonies for some fecal coliform plates were confirmed as per SM0222 methodology. Colonies that exhibited positive atypical morphology were originally counted as positive. This result is the first Fecal Coliform result on the report under "Microbiological analyses." Because these colonies were confirmed as negative after the secondary method was completed, ATL included that data as the second Fecal Coliform result under the ID labeled "re-analysis." Management wished to present all data as, while the confirmation test showed some colonies to be negative, their morphology most closely resembled positive colonies.

TAMU - Ag. EngE-Flow / S4 (OP-I)		Collected: 10/17/23 10:58 by CLIENT Received: 10/17/23 12:19 by Hannah Cline			Type Grab		Matrix Non F		+C# 2179		
Lab ID# G032179-04	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Baton	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	10/18/23 07:30 VML	SM5210 B 2016	M168197	114
Total Suspended Solids	23	mg/L	G-01	1	5	5	Bryan	10/17/23 11:57 SDH	SM2540 D 2015	M168176	-
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/23/23 10:49 KMA	SM4500-NH3 G 2011	M168463	NE
Total Kjeldahl Nitrogen as N	0.29	mg/L	MS-01	0.13	0.13	0.20	Bryan	10/24/23 12:41 KMA	EPA 351.2 R2.0	M168346	M
Nitrate/Nitrite as N	18	mg/L		0.02	0.17	0.20	Bryan	10/18/23 11:48 KMA	SM4500-NO3-F 2011	M168236	A
Turbidity	12	NTU	G-01	0.2	0.2	0.4	Bryan	10/17/23 10:34 ATG	SM2130 B 2011	M168173	M
Microbiological Analyses											
Fecal Coliform	260 (see sample memo)	CFU/100 mL		1	10	10	Bryan	10/17/23 15:33 HDH	SM9222 D 2015	M168163	~
E. Coli	345	MPN/100 mL		1.0	1.0	1.0	Bryan	10/17/23 14:39 HDH	SM9223 B 2004	M168162	M
Results run by SM 9223B are reported as M	PN (Most Probab	le Number). MPN	is comparable to CFU (Cold	ony Formin	ng Units). B	oth MPN a	and CFU ar	e allowed in most permits	s.		
Wetals (Total)											
Phosphorus-Total	3.54	mg/L		0.082	0.041	0.050	Bryan	10/26/23 12:57 MRG	EPA 200.7 R4.4	M168269	
G032179-04 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
Microbiological Analyses								100 S 000			
Fecal Coliform	100 /	05111005				-	Brvan	10112102 (0.22 1001)	0110000 0 0015		
Fecal Collform	160 (see sample memo)	CFU/100 mL	M5	1	10	10	Bryan	10/17/23 15:33 HDH	SM9222 D 2015	M168163	~

Fecal Coliform result on the report under "Microbiological analyses." Because these colonies were confirmed as negative after the secondary method was completed, ATL included that data as the second Fecal Coliform result under the ID labeled "re-analysis." Management wished to present all data as, while the confirmation test showed some colonies to be negative, their morphology most closely resembled positive colonies.

Form: C:VELMINT/FORMATIATL 051823 FIN_LS.RPT

Page 3 of 11 G032179 1 ATL 051823 FIN Is 11 03 23 1651

BRYAN FACILITY 635 Phil Gramm Boulevard Bryan, TX 77807	TECH		AUSTIN F/ Nontopolis Dr. Austin, T	Suite A X 78744	-		nent of Bi	Analytical Report Biological and Ag. Eng.				
Phone: (979) 778-3707 Fax: (979) 778-3193	DRIES, INC.		hone: (512) 30 Fax: (512) 30				Report Printe	eport Printed: 11/3/23				
TAMU - Ag. EngE-Flow / S	5 (OP-E)		10/17/23 11:30 by CLIENT 10/17/23 12:19 by Hannah	Cline		Type Grab		Matrix Non P		C-O-C # G032179		G032179
Lab ID# G032179-05	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Baton	
General Chemistry												
BOD (5 day)	2	mg/L		1	2	2	Bryan	10/18/23 07:30 VML	SM5210 B 2016		M168197	NEL
Total Curnended Calide	4	mail					Datas	10/17/02 11:57 004	CHICKLE D ODAE			

Total Suspended Solids	<1	mg/L	G-01	1	1	1	Bryan	10/17/23 11:57 SDH	SM2540 D 2015	M168177	NEL.
Ammonia as N	<0.05	mg/L.		0.05	0.05	0.05	Bryan	10/23/23 10:49 KMA	SM4500-NH3 G 2011	M168463	NEL
Total Kjeldahl Nitrogen as N	1.08	mg/L	MS-01	0.13	0.13	0.20	Bryan	10/24/23 12:41 KMA	EPA 351.2 R2.0	M168346	NEL.
Nitrate/Nitrite as N	11	mg/L		0.02	0.10	0.12	Bryan	10/18/23 11:48 KMA	SM4500-NO3-F 2011	M168236	AMR
Turbidity	4.5	NTU	G-01	0.2	0.2	0.4	Bryan	10/17/23 10:34 ATG	SM2130 B 2011	M168173	NEI,
Microbiological Analyses											
Fecal Coliform	<100	CFU/100 mL	M5	1	100	100	Bryan	10/17/23 15:33 HDH	SM9222 D 2015	M168163	NEL.
E. Coli	10.9	MPN/100 mL		1.0	1.0	1.0	Bryan	10/17/23 14:39 HDH	SM9223 B 2004	M168162	NEL

Metals (Total)										
Phosphorus-Total	3.21	mg/L	0.082	0.041	0.050	Bryan	10/26/23 13:00 MRG	EPA 200.7 R4.4	M168269	NEL

	Explanation of Notes
BOD-07	Optional second BOD/CBOD GG was outside expected range. Results accepted on one required passing GG.
G-01	This sample was added to an analytical run already in progress. See the prep time for when this sample was added.
M5	This result is estimated as no plates contained colony counts within the method-specified range.
MS-01	The MS and/or MSD recovery was outside acceptance limits. Investigation concludes it is a sample-specific matrix effect and the batch was accepted based on acceptable LCS and /or LCSD recovery.
Ratio	The ratio results are outside normal parameters. The results fall within the established acceptable laboratory variance.
SL-01	The dried residue did not yield between 2.5 and 200 mg as specified in the method. Due to holding time constraints or insufficient sample volume, the sample cannot be reanalyzed.
SL-02	The dried residue did not yield between 2.5 and 200 mg as specified in the method. The sample was not re-analyzed due to extended filtration time.

Page 4 of 11 G032179_1 ATL 051823 FIN_Is 11 03 23 1651

635 Phil Gramm Boulevard	4		-	3512 M	AUSTIN F		_			Analytic	al Repor
Bryan, TX 77807 Phone: (979) 778-3707		JA-T	ECH		Austin, T.	K 78744			TAMU - Departmen	nt of Biological ar	nd Ag. Eng
Fax: (979) 778-3193	LAB	ORATOR	RIES, INC.		ax: (512) 3				Report Printed:	11/3/23	16:5
											G03218
TAMU - Ag. EngE-Flow / S1	I (GH-I)		18/23 12:10 by CLIENT 18/23 13:18 by Hannah Cl	ine		Type Grab		Matrix Non F		-O-C # 032180	
Lab ID# G032180-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	10/19/23 07:35 CTG	SM5210 B 2016	M168291	NEL
Total Suspended Solids	4	mg/L		1	1	1	Bryan	10/18/23 14:01 SDH	SM2540 D 2015	M168263	NEL.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/24/23 11:34 KMA	SM4500-NH3 G 2011	M168484	NEL.
Total Kjeldahl Nitrogen as N	<0.20	mg/L	MS-01	0.13	0.13	0.20	Bryan	10/24/23 12:41 KMA	EPA 351.2 R2.0	M168346	NEL
Nitrate/Nitrite as N	19	mg/L		0.02	0.17	0.20	Bryan	10/25/23 11:24 KMA	SM4500-NO3-F 2011	M168540	ANR
Turbidity	2.5	NTU		0.2	0.2	0.4	Bryan	10/19/23 06:54 ATG	SM2130 B 2011	M168282	NEL.
Microbiological Analyses											
Fecal Coliform	226	CFU/100 mL	F2	1	3	3	Bryan	10/18/23 15:50 HDH	SM9222 D 2015	M168218	NEL.
E. Coli	219	MPN/100 mL		1.0	1.0	1.0	Bryan	10/18/23 15:13 HDH	SM9223 B 2004	M168217	NEL
Results run by SM 9223B are report	ted as MPN (Most Probab	le Number). MPN	is comparable to CFU (C	olony Form	ing Units). B	oth MPN	and CFU a	re allowed in most permits			
Metals (Total)											
Phosphorus-Total	3.43	mg/L		0.082	0.041	0.050	Bryan	10/26/23 13:03 MRG	EPA 200.7 R4.4	M168269	NEL
			18/23 12:40 by CLIENT	0.082	0.041	0.050 Type	Biyan	10/26/23 13:03 MRG <i>Matri</i> x		M168269	NEL
Phosphorus-Total TAMU - Ag. EngE-Flow / S2		Collected: 10/	18/23 12:40 by CLIENT 18/23 13:18 by Hannah Cl		0.041		Bryan	Matrix	C-		NEL
		Collected: 10/			0.041 Adj MDL	Type	Bryan	Matrix	C-	o-c#	NEL
TAMU - Ag. EngE-Flow / S2	2 (GH-E)	Collected: 10/ Received: 10/	18/23 13:18 by Hannah Cl	ine		Type Grab		<i>Matrix</i> Non F	C- otable GC	-O-C # 032180	NEL
TAMU - Ag. EngE-Flow / S2 Lab ID# G032180-02	2 (GH-E)	Collected: 10/ Received: 10/	18/23 13:18 by Hannah Cl	ine		Type Grab		<i>Matrix</i> Non F	C- otable GC	-O-C # 032180	NEL NEL
TAMU - Ag. EngE-Flow / S2 Lab ID# G032180-02 General Chemistry	2 (GH-E) Result	Collected: 10/ Received: 10/ Units	18/23 13:18 by Hannah Cl	ine MDL	Adj MDL	Type Grab SQL	Lab	<i>Matrix</i> Non P Analyzed	otable GC Method	0-C # 032180 Batch	
TAMU - Ag. EngE-Flow / \$2 Lab ID# G032180-02 General Chemistry BOD (5 day)	2 (GH-E) Result <2	Collected: 10/ Received: 10/ Units mg/L	18/23 13:18 by Hannah Cl	ine MDL 1	Adj MDL 2	Type Grab SQL 2	Lab Bryan	Matrix Non P Analyzed 10/19/23 07:35 CTG	C- lotable GC Method SM5210 B 2016	0-C # 032180 Batch M168291	NEL
TAMU - Ag. EngE-Flow / S2 Lab ID# G032180-02 General Chemistry BOD (5 day) Total Suspended Solids	2 (GH-E) Result <2 <1	Collected: 10/ Received: 10/ Units mg/L mg/L	18/23 13:18 by Hannah Cl	ine MDL 1. 1.	Adj MDL 2 1	Type Grab SQL 2 1	Lab Bryan Bryan	Matrix Non P Analyzed 10/19/23 07:35 CTG 10/18/23 14:01 SDH	otable C- Method SM5210 B 2016 SM2540 D 2015	0-C # Batch M168291 M168263	NEL NEL
TAMU - Ag. EngE-Flow / S2 Lab ID# G032180-02 General Chemistry BOD (5 day) Total Suspended Solids Ammonia as N	2 (GH-E) Result <2 <1 <0.05	Collected: 10/ Received: 10/ Units mg/L mg/L mg/L	18/23 13:18 by Hannah Cl Notes	ine MDL 1 1 0.05	Adj MDL 2 1 0.05	Type Grab SQL 2 1 0.05	Lab Bryan Bryan Bryan	Matrix Non P Analyzed 10/19/23 07:35 CTG 10/19/23 14:01 SDH 10/24/23 11:34 KMA	otable GC Method SM5210 B 2016 SM2540 D 2015 SM4500-NH3 G 2011	0-0 # 032180 Batch M168291 M168263 M168484	NEL NEL NEL
TAMU - Ag. EngE-Flow / S2 Lab ID# G032180-02 General Chemistry BOD (5 day) Total Suspended Solids Ammonia as N Total Kjeldahl Nitrogen as N	2 (GH-E) Result -2 -1 -0.05 0.48 8.9 2.7	Collected: 10/ Received: 10/ Units mg/L mg/L mg/L mg/L	18/23 13:18 by Hannah Cl Notes	ine MDL 1 1 0.05 0.13	Adj MDL 2 1 0.05 0.13	<i>Type</i> Grab SQL 2 1 0.05 0.20	Lab Bryan Bryan Bryan Bryan	Matrix Non P Analyzed 10/19/23 07:35 CTG 10/18/23 14:01 SDH 10/24/23 11:34 KMA 10/24/23 12:41 KMA	otable GC Method SM5210 B 2016 SM2540 D 2015 SM4500-NH3 G 2011 EPA 351.2 R2.0	O-C # 332180 Batch M168291 M168263 M168464 M168346 M168340 M168262	NEL NEL NEL NEL
TAMU - Ag. EngE-Flow / S2 Lab ID# G032180-02 General Chemistry B00 (5 day) Total Suspended Solids Ammonia as N Total Kjeldahl Nitrogen as N Nitrate/Nitrite as N	2 (GH-E) Result <2 <1 <0.05 0.48 8.9	Collected: 10/ Received: 10/ Units mg/L mg/L mg/L mg/L mg/L	18/23 13:18 by Hannah Cl Notes	ine MDL 1 0.05 0.13 0.02	Adj MDL 2 1 0.05 0.13 0.17	7ype Grab SQL 2 1 0.05 0.20 0.20	Lab Bryan Bryan Bryan Bryan Bryan	Matrix Non P Analyzed 10/19/23 07:35 CTG 10/18/23 14:01 SDH 10/24/23 11:34 KMA 10/24/23 12:41 KMA 10/25/23 11:24 KMA	otable GG Method SM5210 B 2016 SM2540 D 2015 SM4500-NH3 G 2011 EPA 351 2 R2.0 SM4500-NO3-F 2011	0-C# 132180 Batch M168291 M168263 M168484 M168346 M168540	NEL NEL NEL NEL NEL ANR
TAMU - Ag. EngE-Flow / S2 Lab ID# G032180-02 General Chemistry BOD (5 day) Total Suspended Solids Ammonia as N Total Kjeldah Nitrogen as N Nitrate/Nitrite as N Turbidity	2 (GH-E) Result -2 -1 -0.05 0.48 8.9 2.7	Collected: 10/ Received: 10/ Units mg/L mg/L mg/L mg/L mg/L	18/23 13:18 by Hannah Cl Notes	ine MDL 1 0.05 0.13 0.02	Adj MDL 2 1 0.05 0.13 0.17	7ype Grab SQL 2 1 0.05 0.20 0.20	Lab Bryan Bryan Bryan Bryan Bryan	Matrix Non P Analyzed 10/19/23 07:35 CTG 10/18/23 14:01 SDH 10/24/23 11:34 KMA 10/24/23 12:41 KMA 10/25/23 11:24 KMA	otable GG Method SM5210 B 2016 SM2540 D 2015 SM4500-NH3 G 2011 EPA 351 2 R2.0 SM4500-NO3-F 2011	O-C # 332180 Batch M168291 M168263 M168464 M168346 M168340 M168262	NEL NEL NEL NEL NEL ANR

1.0 1.0 Results run by SM 9223B are reported as MPN (Most Probable Number). MPN is comparable to CFU (Colony Forming Units). Both MPN and CFU are allowed in most permits.

Metals (Total) Phosphorus-Total

3.48

mg/L

Form: C:\ELMNT\FORMAT\ATL 051823 FIN_LS.RPT

Page 2 of 11 G032180_1 ATL 051823 FIN_Is 11 03 23 1651

EPA 200.7 R4.4

M168269

WEL

0.082 0.041 0.050 Bryan 10/26/23 13:06 MRG

BRYAN FACILITY 635 Phil Gramm Boulevard	400	3512 M	AUSTIN F	Suite A	-			Analytical Report			
Bryan, TX 77807 Phone: (979) 778-3707	AQU	Ph	Austin, T one: (512) 3				TAMU - Department of				
Fax: (979) 778-3193	LAB	ORATOR	RIES, INC.	1	Fax: (512) 3	01-9552	_		Report Printed:	11/3/23	16:51 G032180
G032180-02 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
Microbiological Analyses											
Fecal Coliform	67 (see sample	CFU/100 mL	F2	1	17	17	Bryan	10/18/23 15:50 HDH	SM9222 D 2015	M168218	NEL

Positive and negative colonies for some fecal coliform plates were confirmed as per SM9222 methodology. Colonies that exhibited positive atypical morphology were originally counted as positive. This result is the first Fecal Coliform result on the report under "Microbiological analyses." Because these colonies were confirmed as negative after the secondary method was completed, ATL included that data as the second Fecal Coliform result under the ID labeled "re-analysis." Management wished to present all data as, while the confirmation test showed some colonies to be negative, their morphology most closely resembled positive colonies.

TAMU - Ag. EngE-Flow / \$4 (OP-I)			8/23 12:22 by CLIENT 8/23 13:18 by Hannah Cl	ine		Type Grab		Matrix Non P	otable G033		
Lab ID# G032180-04	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	10/19/23 07:35 CTG	SM5210 B 2016	M168291	WEL.
Total Suspended Solids	16	mg/L		1	5	5	Bryan	10/18/23 14:01 SDH	SM2540 D 2015	M168263	Nel.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/24/23 11:34 KMA	SM4500-NH3 G 2011	M168484	NEL
Total Kjeldahl Nitrogen as N	<0.20	mg/L	J, MS-01 (0.14)	0.13	0.13	0.20	Bryan	10/24/23 12:41 KMA	EPA 351.2 R2.0	M168346	NEL
Nitrate/Nitrite as N	17	mg/L		0.02	0.17	0.20	Bryan	10/25/23 11:24 KMA	SM4500-NO3-F 2011	M168540	ANY
Turbidity	9.1	NTU		0.2	0.2	0.4	Bryan	10/19/23 06:54 ATG	SM2130 B 2011	M168282	MEL.
Microbiological Analyses											
	253 (see sample memo)	CFU/100 mL	F2	1	7	7	Bryan	10/18/23 15:50 HDH	SM9222 D 2015	M168218	NEL
E. Coli	201	MPN/100 mL		1.0	1.0	1.0	Bryan	10/18/23 15:13 HDH	SM9223 B 2004	M168217	NEL
Results run by SM 9223B are reported as MPI	N (Most Probabl	e Number). MPN	is comparable to CFU (Co	olony Form	ing Units). E	oth MPN	and CFU ar	re allowed in most permits	κ.		
Metals (Total)											
Phosphorus-Total	3.10	mg/L		0.082	0.041	0.050	Bryan	10/26/23 13:09 MRG	EPA 200.7 R4.4	M168269	NEL
				1464					10101		

G032180-04 - re-analysis	Result	Units	NOIES	MUL	Adimor	SQL	Lab	Analyzed	Method	Batch	
Microbiological Analyses											
Fecal Coliform	200 (see sample memo)	CFU/100 mL	F2, M5, Micro-Log	4	7	7	Bryan	10/18/23 15:50 HDH	SM9222 D 2015	M168218	NEL

Positive and negative colonies for some fecal coliform plates were confirmed as per SM9222 methodology. Colonies that exhibited positive atypical morphology were originally counted as positive. This result is the first Fecal Coliform result on the report under "Microbiological analyses." Because these colonies were confirmed as negative after the secondary method was completed. ATL included that data as the second Fecal Coliform result under the ID labeled "re-analysis." Management wished to present all data as, while the confirmation test showed some colonies to be negative, their morphology most closely resembled positive colonies.

Form: C:\ELMINT\FORMAT\ATL 051823 FIN_LS.RPT

memo)

Page 3 of 11 G032180_1 ATL 051823 FIN_Is 11 03 23 1651

635 Phil Gramm Boulevard Bryan, TX 77807	1Q	UA-T	ECH		Austin, T	K 78744	-	TAMU - Department of Biological and A			
Phone: (979) 778-3707 Fax: (979) 778-3193		BORATOP		Phone: (512) 301-9559 Fax: (512) 301-9552					Report Printed:	11/3/23	16:51 G032180
TAMU - Ag. EngE-Flow / S5 (OP-E)		18/23 12:33 by CLIENT 18/23 13:18 by Hannah Clin	e		Type Grab		<i>Matrix</i> Non F		-O-C # 032180	G032100
Lab ID# G032180-05	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	2	mg/L		1	2	2	Bryan	10/19/23 07:35 CTG	SM5210 B 2016	M168291	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	10/18/23 14:01 SDH	SM2540 D 2015	M168263	NEL.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/24/23 11:34 KMA	SM4500-NH3 G 2011	M168484	NEL
Total Kjeldahl Nitrogen as N	0.89	mg/L	MS-01	0.13	0.13	0.20	Bryan	10/24/23 12:41 KMA	EPA 351.2 R2.0	M168346	NEL
Nitrate/Nitrite as N	10	mg/L		0.02	0.17	0.20	Bryan	10/25/23 11:24 KMA	SM4500-NO3-F 2011	M168540	AMR
Turbidity	4.5	NTU		0.2	0.2	0.4	Bryan	10/19/23 06:54 ATG	SM2130 B 2011	M 168282	NEI.
Nicrobiological Analyses											
Fecal Coliform	17	CFU/100 mL	M5	1	4	4	Bryan	10/18/23 15:50 HDH	SM9222 D 2015	M168218	NEL.
E. Coli	1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	10/18/23 15:13 HDH	SM9223 B 2004	M168217	NEL.
Results run by SM 9223B are reported	as MPN (Most Pro	bable Number). MPN	is comparable to CFU (Col	ony Form	ing Units). B	oth MPN	and CFU ar	e allowed in most permits	5.		
Netals (Total)											
Phosphorus-Total	3.19	mg/L		0.082	0.041	0.050	Bryan	10/26/23 13:12 MRG	EPA 200.7 R4.4	M168269	NEL

BOD-07	Optional second BOD/CBOD GG was outside expected range. Results accepted on one required passing GG.
F2	Verified feoal coliform count/100mL.
J	Analyte detected below the SQL but above the MDL.
M5	This result is estimated as no plates contained colony counts within the method-specified range.
Micro-Log	Log10 duplicate range is outside typical range.
MS-01	The MS and/or MSD recovery was outside acceptance limits. Investigation concludes it is a sample-specific matrix effect and the batch was accepted based on acceptable LCS and /or LCSD recovery.

Page 4 of 11 G032180_1 ATL 051823 FIN_Is 11 03 23 1651

BRYAN FACILITY 635 Phil Gramm Boulevard	A		FOL	3512 M	AUSTIN F.		_			Analytica	al Report
Bryan, TX 77807	AQU	I-A	ECH	-	Austin, T one: (512) 3				TAMU - Departme	ent of Biological an	d Ag. Eng
Phone: (979) 778-3707 Fax: (979) 778-3193			RIES, INC.		ax: (512) 3				Report Printed	: 11/3/23	16:51 G032181
TAMU - Ag. EngE-Flow / S1			24/23 12:12 by CLIENT 24/23 13:32 by Hannah Clin	ne		Type Grab		Matri Non F		C-O-C # 3032181	
Lab ID# G032181-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	ব	mg/L		1	1	1	Bryan	10/25/23 07:20 CTG	SM5210 B 2016	M168519	NEL
Total Suspended Solids	4	mg/L		1	1	1	Bryan	10/24/23 15:02 SDH	SM2540 D 2015	M168504	NEI.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/30/23 11:40 KMA	SM4500-NH3 G 2011	M168744	NEL
Total Kjeldahl Nitrogen as N	<0.20	mg/L	J (0.15)	0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0	M168802	NEL
Nitrate/Nitrite as N	20	mg/L		0.02	0.26	0.30	Bryan	10/25/23 11:24 KMA	SM4500-NO3-F 2011	M168541	ANR
Turbidity	2.1	NTU		0.2	0.2	0.4	Bryan	10/25/23 11:34 ATG	SM2130 B 2011	M168559	NEL.
Microbiological Analyses											
Fecal Coliform	309	CFU/100 mL		T.	3	3	Bryan	10/24/23 16:47 HDH	SM9222 D 2015	M168493	NEL.
E. Coli	308	MPN/100 mL		1.0	1.0	1.0	Bryan	10/24/23 16:06 HDH	SM9223 B 2004	M168494	NEL
Results run by SM 9223B are reported a	s MPN (Most Probabl	e Number). MPN	is comparable to CFU (Co	lony Form	ing Units). E	Both MPN	and CFU a	e allowed in most permit	5.		
Metals (Total)											
Phosphorus-Total	4.02	mg/L		0.082	0.041	0.050	Bryan	10/26/23 14:13 MRG	EPA 200.7 R4.4	M168551	NEL
1 nosphoros-total				0.002		0.000		101201014.10 #110	L'ALLOU, MAR	M 100301	
TAMU - Ag. EngE-Flow / S2		Collected: 10/	24/23 12:17 by CLIENT			Туре		Matri		c-o-c #	
		Received: 10/	24/23 13:32 by Hannah Clin	ne		Grab		Non F	Potable (3032181	
Lab ID# G032181-02	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	<1	mg/L		1	1	1	Bryan	10/25/23 07:20 CTG	SM5210 B 2016	M168519	NEL.
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	10/24/23 15:02 SDH	SM2540 D 2015	M168504	NEL
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/30/23 11:40 KMA	SM4500-NH3 G 2011	M168744	NEL.
Total Kjeldahl Nitrogen as N	1.48	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0	M168802	NEI,
Nitrate/Nitrite as N	7.2	mg/L		0.02	0.17	0.20	Bryan	10/25/23 11:24 KMA	SM4500-NO3-F 2011	M168541	ANR
Turbidity	2.0	NTU		0.2	0.2	0.4	Bryan	10/25/23 11:34 ATG	SM2130 B 2011	M168559	NEL
Microbiological Analyses	operation and the second					10 orto		Internet and the second	and the following of the	U. Course Santas	
Fecal Coliform	340 (see sample memo)	CFU/100 mL		1	10	10	Bryan	10/24/23 16:47 HDH	SM9222 D 2015	M168493	NG.
E. Coli	18.1	MPN/100 mL		1,0	1.0	1.0	Bryan	10/24/23 16:06 HDH	SM9223 B 2004	M168494	NEL
	MONTAR	e Number), MPN	is comparable to CEU (Co	lony Form	ing Units). B	oth MPN	and CFU a	e allowed in most permit	5.		
Results run by SM 9223B are reported a	S MPIN (MOSt Probabi		the comparable to or o (oo								
Results run by SM 9223B are reported a Metals (Total)	S MEN (MOSt Probab										

Page 2 of 11 G032181_1 ATL 051823 FIN_Is 11 03 23 1651

BRYAN FACILITY 635 Phil Gramm Boulevard	401	1A.T	TCH	3512 M	AUSTIN F/ ontopolis Dr.	Suite A	_			Analytical Report			
Bryan, TX 77807 Phone: (979) 778-3707	QUA-TECH			Austin, TX 78744 Phone: (512) 301-9559					TAMU - Department o				
Fax: (979) 778-3193	LAB	ORATOR	RIES, INC.		Fax: (512) 30	01-9552			Report Printed:	11/3/23	16:51 G032181		
G032181-02 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch			
Microbiological Analyses													
Fecal Coliform	6 (see sample	CFU/100 mL	M5	1	6	6	Bryan	10/24/23 16:47 HDH	SM9222 D 2015	M168493	NEL		

Positive and negative colonies for some fecal coliform plates were confirmed as per SM0222 methodology. Colonies that exhibited positive atypical morphology were originally counted as positive. This result is the first Fecal Coliform result on the report under "Microbiological analyses." Because these colonies were confirmed as negative after the secondary method was completed, ATL included that data as the second Fecal Coliform result under the ID labeled "re-analysis." Management wished to present all data as, while the confirmation test showed some colonies to be negative, their morphology most closely resembled positive colonies.

TAMU - Ag. EngE-Flow / S4			24/23 12:20 by CLIENT 24/23 13:32 by Hannah Cline	e		Type Grab		Matrix Non F		-O-C # 032181		
Lab ID# G032181-04	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Baton	
General Chemistry												
BOD (5 day)	2	mg/L		1	1	1	Bryan	10/25/23 07:20 CTG	SM5210 B 2016		M168519	Net
Total Suspended Solids	25	mg/L		1	4	4	Bryan	10/24/23 15:02 SDH	SM2540 D 2015		M168504	Me
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/30/23 11:40 KMA	SM4500-NH3 G 2011		M168744	NE
Total Kjeldahl Nitrogen as N	0.71	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0		M168802	NEX
Nitrate/Nitrite as N	22	mg/L		0.02	0.43	0.50	Bryan	10/25/23 11:24 KMA	SM4500-NO3-F 2011		M168541	AN
Turbidity	14	NTU		0.2	0.2	0.4	Bryan	10/25/23 11:34 ATG	SM2130 B 2011	-	M168559	NE
Microbiological Analyses												
Fecal Coliform	560 (see sample memo)	CFU/100 mL		1	20	20	Bryan	10/24/23 16:47 HDH	SM9222 D 2015		M168493	NE
E. Coli	548	MPN/100 mL		1.0	1.0	1.0	Bryan	10/24/23 16:06 HDH	SM9223 B 2004		M168494	NE
Results run by SM 9223B are reported as	s MPN (Most Probable	e Number). MPN	l is comparable to CFU (Cold	ony Formin	g Units). B	oth MPN	and CFU ar	e allowed in most permits	s			
Metals (Total)												
Phosphorus-Total	3.10	mg/L		0.082	0.041	0.050	Bryan	10/26/23 14:19 MRG	EPA 200.7 R4.4		M168551	NE
G032181-04 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	
Microbiological Analyses												
Fecal Coliform	487 (see sample memo)	CFU/100 mL		1	7	7	Bryan	10/24/23 16:47 HDH	SM9222 D 2015		M168493	NE

Positive and negative colonies for some fecal coliform plates were confirmed as per SM9222 methodology. Colonies that exhibited positive atypical morphology were originally counted as positive. This result is the first Fecal Coliform result on the report under 'Microbiological analyses.' Because these colonies were confirmed as negative after the secondary method was completed. ATL included that data as the second Fecal Coliform result under the ID labeled 're-analysis." Management wished to present all data as, while the confirmation test showed some colonies to be negative, their morphology most closely resembled positive colonies.

Form: C:\ELMNT\FORMAT\ATL 051823 FIN_LS.RPT

Page 3 of 11 G032181_1 ATL 051823 FIN Is 11 03 23 1651

BRYAN FACILITY 635 Phil Gramm Boulevard Bryan, TX 77807	AQUA-TECH				AUSTIN F	Suite A	-		Analytica			
Phone: (979) 778-3707 Fax: (979) 778-3193			DRIES, INC.		ione: (512) 3 Fax: (512) 3	01-9559			TAMU - Depart Report Print		11/3/23	16:51 G032181
TAMU - Ag. EngE-Flow / \$5			10/24/23 12:30 by CLIENT 10/24/23 13:32 by Hannah			Type Grab		Matri Non I	x Potable	C-O-C # G032181		
Lab ID# G032181-05	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Baton	
General Chemistry												
BOD (5 day)	<1	mg/L		1	1	1	Bryan	10/25/23 07:20 CTG	SM5210 B 2016		M168519	NEL

BOD (5 day)	<1	mg/L		1	1	1	Bryan	10/25/23 07:20 CTG	SM5210 B 2016	M168519	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	10/24/23 15:02 SDH	SM2540 D 2015	M168504	NEI.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/30/23 11:40 KMA	SM4500-NH3 G 2011	M168744	NEL
Total Kjeldahl Nitrogen as N	2.04	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0	M168770	NEL
Nitrate/Nitrite as N	9.2	mg/L		0.02	0.43	0.50	Bryan	10/25/23 11:24 KMA	SM4500-NO3-F 2011	M168541	ANR
Turbidity	3.4	NTU		0.2	0.2	0.4	Bryan	10/25/23 11:34 ATG	SM2130 B 2011	M168559	NEI,
Microbiological Analyses											
Fecal Coliform	6	CFU/100 mL	M5	1	6	6	Bryan	10/24/23 16:47 HDH	SM9222 D 2015	M168493	NEL.
E. Coli	1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	10/24/23 16:06 HDH	SM9223 B 2004	M168494	NEL

	3.5.1								
Phosphorus-Total	4.04	mg/L	0.082	0.041	0.050	Bryan	10/26/23 14:22 MRG	EPA 200.7 R4.4	M16855

	Explanation of Notes
BOD-07	Optional second BOD/CBOD GG was outside expected range. Results accepted on one required passing GG.
J	Analyte detected below the SQL but above the MDL.
M5	This result is estimated as no plates contained colony counts within the method-specified range.
SL-01	The dried residue did not yield between 2.5 and 200 mg as specified in the method. Due to holding time constraints or insufficient sample volume, the sample cannot be reanalyzed.

÷

Page 4 of 11 G032181_1 ATL 051823 FIN Is 11 03 23 1651

NEL

635 Phil Gramm Boulevard	100	114	TECH	3512 M	AUSTIN F.					Analytica	al Repor
Bryan, TX 77807	A AQ	UA-	TECH		Austin, T.	K 78744			TAMU - Departme	nt of Biological an	d Ag. Eng
Phone: (979) 778-3707 Fax: (979) 778-3193			ORIES		one: (512) 3 Fax: (512) 3				Report Printed:	11/13/23	11:3 G03497
TAMU - Ag. EngE-Flow / \$1	(GH-I)		25/23 11:05 by CLIENT 25/23 12:17 by Hannah Cli	ne		Type Grab		Matri Non I		-O-C # 034973	
Lab ID# G034973-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	শ	mg/L		1	1	1	Bryan	10/26/23 08:02 CTG	SM5210 B 2016	M168603	NEL
Total Suspended Solids	5	mg/L		1	1	1	Bryan	10/26/23 14:35 SDH	SM2540 D 2015	M168655	NEL.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/31/23 13:40 KMA	SM4500-NH3 G 2011	M168809	NEL
Total Kjeldahl Nitrogen as N	<0.20	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0	M168770	NEL
Nitrate/Nitrite as N	23	mg/L		0.02	0.26	0.30	Bryan	11/01/23 11:36 KMA	SM4500-NO3-F 2011	M168868	ANR
Turbidity	2.7	NTU	G-01	0.2	0.2	0.4	Bryan	10/25/23 11:34 ATG	SM2130 B 2011	M168559	NEL.
Microbiological Analyses											
Fecal Coliform	1100	CFU/100 mL	M5	T.	100	100	Bryan	10/25/23 16:48 HDH	SM9222 D 2015	M168560	NEL.
E. Coli	613	MPN/100 mL		1.0	1.0	1.0	Bryan	10/25/23 14:36 HDH	SM9223 B 2004	M168551	NEL
Results run by SM 9223B are reported	ed as MPN (Most Probab	e Number). MPN	is comparable to CFU (Co	lony Form	ning Units). E	oth MPN	and CFU ar	re allowed in most permit	5.		
Metals (Total)											
Phosphorus-Total	3.83	mg/L		0.082	0.041	0.050	Bryan	11/08/23 13:51 ABM	EPA 200.7 R4.4	M168648	NEL
Thospholds Total	4.00			0.002		0.000		11002010.017.01		W 100040	max
TAMU - Ag. EngE-Flow / S2	(GH-E)		25/23 11:40 by CLIENT 25/23 12:17 by Hannah Cli	ne		Type Grab		Matri Non I		-O-C # 034973	
Lab ID# G034973-02	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	<	mg/L		1	1	1	Bryan	10/26/23 08:02 CTG	SM5210 B 2016	M168603	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	10/26/23 14:35 SDH	SM2540 D 2015	M168655	NEL
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/31/23 13:40 KMA	SM4500-NH3 G 2011	M168810	NEL.
Total Kjeldahl Nitrogen as N	1.47	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0	M168803	NEI.
Nitrate/Nitrite as N	6.8	mg/L		0.02	0.17	0.20	Bryan	11/01/23 11:36 KMA	SM4500-NO3-F 2011	M168868	ANR
Turbidity	1.7	NTU	G-01	0.2	0.2	0.4	Bryan	10/25/23 11:34 ATG	SM2130 B 2011	M168559	NEL
Microbiological Analyses	interest of the second						Landaria		ant instantionstat	1	
Fecal Coliform	1700 (see sample memo)	CFU/100 mL	M5	1	100	100	Bryan	10/25/23 16:48 HDH	SM9222 D 2015	M168560	WEI.
E. Coli	5.2	MPN/100 mL		1.0	1.0	1.0	Bryan	10/25/23 14:36 HDH	SM9223 B 2004	M168561	NEL
	ed as MPN (Most Probab	e Number). MPN	is comparable to CFU (Co	lony Form	ning Units). E	oth MPN	and CFU ar	re allowed in most permit	5.		
Results run by SM 9223B are reported	ad as init in (mosel robala										
Results run by SM 9223B are reporte Metals (Total)											

Page 2 of 11 G034973_1 ATL 051923 FIN_Is 11 13 23 1135

BRYAN FACILITY 635 Phil Gramm Boulevard Bryan, TX 77807					AUSTIN F/ ontopolis Dr. Austin, T	Suite A 78744	<u> </u>		TAMU - Department o	Analytical Repo of Biological and Ag. En		
Phone: (979) 778-3707 Fax: (979) 778-3193			ORIES		one: (512) 3(Fax: (512) 3(_		Report Printed:	11/13/23	11:35 G034973	
G034973-02 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch		
Microbiological Analyses												
Fecal Coliform	6 (see sample	CFU/100 mL	M5	1	6	6	Bryan	10/25/23 16:48 HDH	SM9222 D 2015	M168560	NEL	

Fecal Coliform 6 (see sample CFU/100 mL memo)

Positive and negative colonies for some fecal coliform plates were confirmed as per SM9222 methodology. Colonies that exhibited positive atypical morphology were originally counted as positive. This result is the first Fecal Coliform result on the report under "Microbiological analyses." Because these colonies were confirmed as negative after the secondary method was completed, ATL included that data as the second Fecal Coliform result under the ID labeled "re-analysis." Management wished to present all data as, while the confirmation test showed some colonies to be negative, their morphology most closely resembled positive colonies.

TAMU - Ag. EngE-Flow / \$4 (OP-I)			25/23 11:20 by CLIENT 25/23 12:17 by Hannah Cline			Type Grab		Matrix Non F		-O-C # 034973		
Lab ID# G034973-04	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Baton	
General Chemistry												
BOD (5 day)	2	mg/L		1	1	1	Bryan	10/26/23 08:02 CTG	SM5210 B 2016		M168603	Nel.
Total Suspended Solids	35	mg/L		1	4	4	Bryan	10/26/23 14:35 SDH	SM2540 D 2015		M168655	MEI.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/31/23 13:40 KMA	SM4500-NH3 G 2011		M168809	NEL
Total Kjeldahl Nitrogen as N	1.48	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0		M168803	NEL
Nitrate/Nitrite as N	23	mg/L		0.02	0.26	0.30	Bryan	11/01/23 11:36 KMA	SM4500-NO3-F 2011		M168868	AN
Turbidity	19	NTU	G-01	0.2	0.2	0.4	Bryan	10/25/23 11:34 ATG	SM2130 B 2011		M 168559	NEL
Microbiological Analyses												
Fecal Coliform	430 (see sample memo)	CFU/100 mL		1	10	10	Bryan	10/25/23 16:48 HDH	SM9222 D 2015		M168560	NEL
E. Coli	613	MPN/100 mL		1.0	1.0	1.0	Bryan	10/25/23 14:36 HDH	SM9223 B 2004		M168561	NEL
Results run by SM 9223B are reported as MF	PN (Most Probable	e Number). MPN	l is comparable to CFU (Colo	ny Formir	ng Units). B	oth MPN a	and CFU an	e allowed in most permits	5.			
Vietals (Total)												
Phosphorus-Total	3.81	mg/L		0.082	0.041	0.050	Bryan	11/08/23 13:57 ABM	EPA 200.7 R4.4		M168648	NEL
G034973-04 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	
Microbiological Analyses												
Fecal Coliform	400 (see sample memo)	CFU/100 mL		1	4	4	Bryan	10/25/23 16:48 HDH	SM9222 D 2015		M168560	NEL

Positive and negative colonies for some fecal coliform plates were confirmed as per SM9222 methodology. Colonies that exhibited positive atypical morphology were originally counted as positive. This result is the first Fecal Coliform result on the report under "Microbiological analyses." Because these colonies were confirmed as negative after the secondary method was completed. ATL included that data as the second Fecal Coliform result under the ID labeled "re-analysis." Management wished to present all data as, while the confirmation test showed some colonies to be negative, their morphology most closely resembled positive colonies.

Form: C:\ELMNT\FORMAT\ATL 051923 FIN_LS.RPT

Page 3 of 11 G034973 1 ATL 051923 FIN Is 11 13 23 1135

Ag. Eng	iological and	partment of B	TAMU - Depar			K 78744	ontopolis Dr. Austin, T		TECH	UA-	AG		Bryan, TX 7
11:3	11/13/23	Printed:	Report Prin				one: (512) 30 Fax: (512) 30		ORIES				Phone: (97) Fax: (979) 1
003437.		C-O-C # G034973	x Potable	<i>Matri</i> Non F		Type Grab		e	5/23 11:30 by CLIENT 5/23 12:17 by Hannah Cline		E)	g. EngE-Flow / \$5 (OP-	TAMU - A
	Baton		Method	Analyzed	Lab	SQL	Adj MDL	MDL	Notes	Units	Result	3034973-05	Lab ID# (
												nistry	General Che
NEL	M168603	016	SM5210 B 2016	10/26/23 08:02 CTG	Bryan	1	1	1		mg/L	<1	N N	BOD (5 day)
NEL.	M168655	015	SM2540 D 2015	10/26/23 14:35 SDH	Bryan	1	1	1		mg/L	<1	nded Solids	Total Suspe
NEL	M168810	3 G 2011	SM4500-NH3 G	10/31/23 13:40 KMA	Bryan	0.05	0.05	0.05		mg/L	<0.05	s N	Ammonia a
NEL	M168803	2.0	EPA 351.2 R2.0	10/31/23 14:09 KMA	Bryan	0.20	0.13	0.13		mg/L	1.53	hl Nitrogen as N	Total Kjelda
ANR	M168868	3-F 2011	SM4500-NO3-F	11/01/23 11:36 KMA	Bryan	0.20	0.17	0.02		mg/L	10	te as N	Nitrate/Nitri
NEI.	M 168559	011	SM2130 B 2011	10/25/23 11:34 ATG	Bryan	0.4	0.2	0.2	G-01	NTU	3.5		Turbidity
												cal Analyses	Microbiologi
NEL.	M168560	015	SM9222 D 2015	10/25/23 16:48 HDH	Bryan	100	100	1	M5	CFU/100 mL	<100	m	Fecal Colifo
NEL	M168561	004	SM9223 B 2004	10/25/23 14:36 HDH	Bryan	1.0	1.0	1.0		MPN/100 mL	3.0		E. Coli
			s.	e allowed in most permit	and CFU an	oth MPN a	ning Units). B	ony Form	is comparable to CFU (Colo	ole Number). MPN	MPN (Most Prot	by SM 9223B are reported as I	Results run
)	Metals (Total
NEL	M168648	4.4	EPA 200.7 R4.4	11/08/23 14:00 ABM	Bryan	0.050	0.041	0.082		mg/L	2.92	-Total	Phosphorus

BOD-07	Optional second BOD/CBOD GG was outside expected range. Results accepted on one required passing GG.
G-01	This sample was added to an analytical run already in progress. See the prep time for when this sample was added.
M5	This result is estimated as no plates contained colony counts within the method-specified range.

Page 4 of 11 G034973_1 ATL 051923 FIN_Is 11 13 23 1135

835 Phil Gramm Boulevard Bryan, TX 77807		IIA.	TECH	3512 M	Austin, T		-			Analytica	
Phone: (979) 778-3707	AG	UA	TECH	Ph	Austin, 1.				TAMU - Departmen	t of Biological and	d Ag. Eng
Fax: (979) 778-3193	LAB	ORAI	ORIES	F	ax: (512) 3	01-9552			Report Printed:	11/13/23	12:4
				_							G03497
AMU - Ag. EngE-Flow / S1	I (GH-I)		26/23 10:43 by CLIENT 26/23 12:31 by Hannah Clin	ne		Type Grab		Matrio Non F		0-C # 34974	
ab ID# G034974-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
eneral Chemistry											
BOD (5 day)	ব	mg/L		1	1	1	Bryan	10/27/23 07:30 CTG	SM5210 B 2016	M168667	NEL
Total Suspended Solids	3	mg/L		1	1	1	Bryan	10/26/23 14:35 SDH	SM2540 D 2015	M168655	NEL.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/31/23 13:40 KMA	SM4500-NH3 G 2011	M168812	NEL
Total Kjeldahl Nitrogen as N	<0.20	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0	M168802	NEL
Nitrate/Nitrite as N	23	mg/L		0.02	0.26	0.30	Bryan	11/01/23 11:36 KMA	SM4500-NO3-F 2011	M168869	ANR
Turbidity	2.2	NTU		0.2	0.2	0.4	Bryan	10/26/23 15:24 ATG	SM2130 B 2011	M168659	NEL.
crobiological Analyses											
Fecal Coliform	>= 400	CFU/100 mL		T.	100	100	Bryan	10/26/23 14:14 ATA	SM9222 D 2015	M168600	NEL.
E. Coli	135	MPN/100 mL		1.0	1.0	1.0	Bryan	10/26/23 13:14 ATA	SM9223 B 2004	M168601	NEL
Results run by SM 9223B are report	ed as MPN (Most Probab	e Number). MPI	N is comparable to CFU (Co	lony Form	ing Units). E	oth MPN	and CFU ar	e allowed in most permit	5.		
etals (Total)											
Phosphorus-Total	3.81	mg/L		0.082	0.041	0.050	Bryan	11/08/23 14:09 ABM	EPA 200.7 R4.4	M168648	NEL
AMU - Ag. EngE-Flow / S2	2 (GH-E)	Collected: 10/	26/23 11:36 by CLIENT			Type		Matri	C-1	0-C#	
		Received: 10/	28/23 12:31 by Hannah Clin	ne		Grab		Non F	Potable G0	34974	
ab ID# G034974-02	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
eneral Chemistry											
BOD (5 day)	<1	mg/L		1	1	1	Bryan	10/27/23 07:30 CTG	SM5210 B 2016	M168667	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	10/26/23 14:35 SDH	SM2540 D 2015	M168655	NEL
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/31/23 13:40 KMA	SM4500-NH3 G 2011	M168812	NEL.
Total Kjeldahl Nitrogen as N	1.62	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0	M168770	NEL.
Nitrate/Nitrite as N	7.5	mg/L		0.02	0.17	0.20	Bryan	11/01/23 11:36 KMA	SM4500-NO3-F 2011	M168869	ANR
Turbidity	1.7	NTU		0.2	0.2	0.4	Bryan	10/26/23 15:24 ATG	SM2130 B 2011	M168659	NEL
crobiological Analyses	a second started	or manage							set in contract-in		
Fecal Coliform	>6000 (see sample memo)	CFU/100 mL		1	100	100	Bryan	10/26/23 14:14 ATA	SM9222 D 2015	M168600	NEI.
E. Coli	5.2	MPN/100 mL		1.0	1.0	1.0	Bryan	10/26/23 13:14 ATA	SM9223 B 2004	M168601	NEL
Results run by SM 9223B are report	ed as MPN (Most Probab	e Number). MP1	N is comparable to CFU (Co	lony Form	ing Units). E	Both MPN	and CFU ar	e allowed in most permit	5.		
etals (Total)											
Phosphorus-Total	2.74	mg/L		0.082	0.041	0.050	Bryan	11/08/23 14:12 ABM	EPA 200.7 R4.4	M168648	WEL.

Page 2 of 12 G034974_1 ATL 051923 FIN_Is 11 13 23 1243

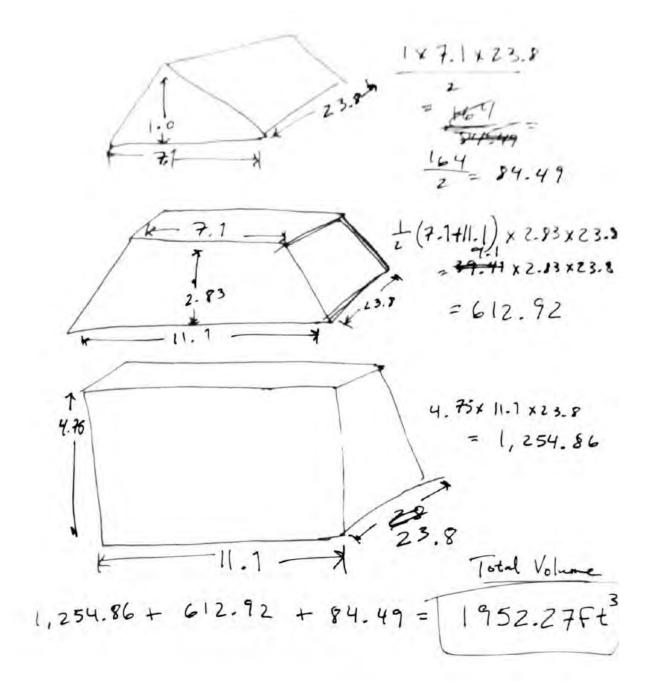
BRYAN FACILITY 635 Phil Gramm Boulevard				2512 M	AUSTIN F						Analytica	Report
Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193			TECH	Ph	Austin, T. one: (512) 3 Fax: (512) 3	K 78744 01-9559			TAMU - Departm Report Printe		blogical and 11/13/23	1 Ag. Eng. 12:43 G034974
G034974-02 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	
Microbiological Analyses												
Fecal Coliform	>= 0 (see sample memo)	CFU/100 mL		1	100	100	Bryan	10/26/23 14:14 ATA	SM9222 D 2015		M168600	NEL.
TAMU - Ag. EngE-Flow / \$3 (DH)			26/23 11:45 by CLIENT 26/23 12:31 by Hannah Cline	2		Type Grab		Matri Non	x Potable	C-O-C # G034974		
Lab ID# G034974-03	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	á	Batch	
General Chemistry												
BOD (5 day)	<1	mg/L		1	1	1	Bryan	10/27/23 07:30 CTG	SM5210 B 2016		M168667	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	10/26/23 14:35 SDH	SM2540 D 2015		M 168655	NEL.
Ammonia as N	0.63	mg/L		0.05	0.05	0.05	Bryan	10/31/23 13:40 KMA	SM4500-NH3 G 201	t	M168812	NEI.
Total Kjeldahl Nitrogen as N	0.73	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0	1	M 168802	NEL
Nitrate/Nitrite as N	0.05	mg/L		0.02	0.02	0.02	Bryan	11/01/23 11:36 KMA	SM4500-NO3-F 201	1	M 168869	ANR
Turbidity	<0.4	NTU	J (0.2)	0.2	0.2	0.4	Bryan	10/26/23 15:24 ATG	SM2130 B 2011		M168659	MEI.
Microbiological Analyses												
Fecal Coliform	<1	CFU/100 mL		1	1	1	Bryan	10/26/23 14:14 ATA	SM9222 D 2015		M168600	HEI.
E. Coli	<1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	10/26/23 13:14 ATA	SM9223 B 2004		M168601	NEL
Results run by SM 9223B are reported as M	IPN (Most Probab	le Number). MPN	is comparable to CFU (Cold	ny Form	ning Units). E	oth MPN	and CFU a	re allowed in most permit	s.			
Metals (Total)												
Phosphorus-Total	0.078	mg/L		0.082	0.041	0.050	Bryan	11/08/23 14:15 ABM	EPA 200.7 R4.4		M168648	NEL.

Page 3 of 12 G034974_1 ATL 051923 FIN_Is 11 13 23 1243

BRYAN FACILITY 635 Phil Gramm Boulevard	10	IIA.	TECH	3512 M	AUSTIN F	Suite A	-			Analytica	
Bryan, TX 77807 Phone: (979) 778-3707	AG	UA.	TECH	Dis	Austin, T.				TAMU - Department	of Biological and	Ag. Eng.
Fax: (979) 778-3193	IAR	DRAT	ORIES		ax: (512) 3				Report Printed:	11/13/23	12:43
	LAD	ONA	OKIES								G034974
TAMU - Ag. EngE-Flow / S4 (OP-I)			26/23 10:56 by CLIENT 26/23 12:31 by Hannah Clin	e		Type Grab		Matrix Non F		LC # 4974	
Lab ID# G034974-04	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
BOD (5 day)	1	mg/L		1	1	1	Bryan	10/27/23 07:30 CTG	SM5210 B 2016	M168667	NEL
Total Suspended Solids	14	mg/L		1	4	4	Bryan	10/26/23 14:35 SDH	SM2540 D 2015	M 168656	NEL.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/31/23 13:40 KMA	SM4500-NH3 G 2011	M168812	NEL
Total Kjeldahl Nitrogen as N	<0.20	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0	M168802	NEL
Nitrate/Nitrite as N	22	mg/L		0.02	0.26	0.30	Bryan	11/01/23 11:36 KMA	SM4500-NO3-F 2011	M168869	AMR
Turbidity	7.4	NTU		0.2	0.2	0.4	Bryan	10/26/23 15:24 ATG	SM2130 B 2011	M 168659	NEI.
Microbiological Analyses											
	300 (see sample memo)	CFU/100 mL		t	10	10	Bryan	10/26/23 14:14 ATA	SM9222 D 2015	M168600	NBL
E. Coli	727	MPN/100 mL		1.0	1.0	1.0	Bryan	10/26/23 13:14 ATA	SM9223 B 2004	M168601	NEL
Results run by SM 9223B are reported as MP	N (Most Probable	e Number). MPN	I is comparable to CFU (Col	ony Form	ing Units). E	oth MPN	and CFU ar	e allowed in most permits	5.		
Metals (Total)											
Phosphorus-Total	3.70	mg/L		0.082	0.041	0.050	Bryan	11/08/23 14:18 ABM	EPA 200.7 R4.4	M168648	NEL
G034974-04 - re-analysis	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
Microbiological Analyses											
	300 (see sample memo)	CFU/100 mL		t	10	10	Bryan	10/26/23 14:14 ATA	SM9222 D 2015	M168600	NO.

Page 4 of 12 G034974_1 ATL 051923 FIN_Is 11 13 23 1243

BRYAN FACILITY 635 Phil Gramm Boulevard		ALLA	TECH	3512 M	AUSTIN F/ ontopolis Dr.		-			Analytica	al Report
Bryan, TX 77807	A AG	AUS	-TECH	-	Austin, T.				TAMU - Department	of Biological an	d Ag. Eng.
Phone: (979) 778-3707 Fax: (979) 778-3193			TORIES		ax: (512) 3				Report Printed:	11/13/23	12:43
Cond Restricted	LAL	JONA	TORIES			_					G034974
TAMU - Ag. EngE-Flow / \$5	(OP-E)		/26/23 11:20 by CLIENT /26/23 12:31 by Hannah Clir	ne		Type Grab		Matri Non		-C # 4974	
Lab ID# G034974-05	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Baton	
General Chemistry											
BOD (5 day)	<1	mg/L		1	1	1	Bryan	10/27/23 07:30 CTG	SM5210 B 2016	M168667	NEL
Total Suspended Solids	<1	mg/L		1	1	1	Bryan	10/26/23 14:35 SDH	SM2540 D 2015	M168656	NEL.
Ammonia as N	<0.05	mg/L		0.05	0.05	0.05	Bryan	10/31/23 13:40 KMA	SM4500-NH3 G 2011	M168812	NEL
Total Kjeldahl Nitrogen as N	1.76	mg/L		0.13	0.13	0.20	Bryan	10/31/23 14:09 KMA	EPA 351.2 R2.0	M168802	NEL
Nitrate/Nitrite as N	9.3	mg/L		0.02	0.17	0.20	Bryan	11/01/23 11:36 KMA	SM4500-NO3-F 2011	M168869	ANR
Turbidity	3.5	NTU		0.2	0.2	0.4	Bryan	10/26/23 15:24 ATG	SM2130 B 2011	M168659	NEI.
Microbiological Analyses											
Fecal Coliform	>= 300	CFU/100 mL		T.	100	100	Bryan	10/26/23 14:14 ATA	SM9222 D 2015	M168600	NEL.
E. Coli	1.0	MPN/100 mL		1.0	1.0	1.0	Bryan	10/26/23 13:14 ATA	SM9223 B 2004	M168601	NEL.
Results run by SM 9223B are reported	ed as MPN (Most Pro	bable Number). MPI	N is comparable to CFU (Co	lony Form	ing Units). E	oth MPN	and CFU ar	e allowed in most permit	s.		
Metals (Total)											
Phosphorus-Total	2.95	mg/L		0.082	0.041	0.050	Bryan	11/08/23 14:21 ABM	EPA 200.7 R4.4	M168648	NEL


Explanation of Notes

BOD-07 Optional second BOD/CBOD GG was outside expected range. Results accepted on one required passing GG.

J Analyte detected below the SQL but above the MDL.

Form: C:\ELMNT\FORMAT\ATL 051923 FIN_LS.RPT

Page 5 of 12 G034974 1 ATL 051923 FIN Is 11 13 23 1243

Greenhouse Volume								
<u> TOP - Triangle</u>								
Height =	1	ft						
Base =	7.1	ft						
Length =	23.8	ft						
Volume1 =	84.49	cub.ft.	Triangular Priam Your way!					
MIDDLE -Prisam								
Height =	2.83	ft						
Length =	23.8	ft						
Long Base =	11.1	ft						
Short Base =	7.1	ft						
Voulume2 =	612.9	cub.ft.	https://www.omnicalculator.com/math/trapezoidal-prism-volume					
BOTTOM - Rectangular								
Height =	4.75	ft						
Width =	11.1	ft						
Length =	23.8	ft						
Volume3 =	1254.9	cub.ft.	https://www.omnicalculator.com/math/rectangular-prism-volume					
TOTAL VOLUME =	1,952	cub. ft.						